Continuous algorithms in adaptive sampling recovery
We study optimal algorithms in adaptive continuous sampling recovery of smooth functions defined on the unit d-cube Id≔[0,1]d. Functions to be recovered are in Besov space . The recovery error is measured in the quasi-norm ‖⋅‖q of . For a set A⊂Lq, we define a sampling algorithm of recovery with t...
Saved in:
Main Author: | |
---|---|
Format: | Book Book chapter Dataset |
Published: |
Journal of Approximation Theory
2016
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/10983 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
id |
oai:112.137.131.14:VNU_123-10983 |
---|---|
record_format |
dspace |
spelling |
oai:112.137.131.14:VNU_123-109832017-04-05T14:08:54Z Continuous algorithms in adaptive sampling recovery Dinh Dũng Adaptive sampling recovery; Continuous n-sampling algorithm; B-spline quasi-interpolant representation; Besov space We study optimal algorithms in adaptive continuous sampling recovery of smooth functions defined on the unit d-cube Id≔[0,1]d. Functions to be recovered are in Besov space . The recovery error is measured in the quasi-norm ‖⋅‖q of . For a set A⊂Lq, we define a sampling algorithm of recovery with the free choice of sample points and recovering functions from A as follows. For each , we choose n sample points which define n sampled values of f. Based on these sample points and sampled values, we choose a function from A for recovering f. The choice of n sample points and a recovering function from A for each defines an n-sampling algorithm . We suggest a new approach to investigate the optimal adaptive sampling recovery by in the sense of continuous non-linear n-widths which is related to n-term approximation. If Φ={φk}k∈K is a family of functions in Lq, let Σn(Φ) be the non-linear set of linear combinations of n free terms from Φ. Denote by G the set of all families Φ such that the intersection of Φ with any finite dimensional subspace in Lq is a finite set, and by the set of all continuous mappings from into Lq. We define the quantity For 0<p,q,θ≤∞ and α>d/p, we prove the asymptotic order 2016-05-27T01:51:29Z 2016-05-27T01:51:29Z 2012 Book Book chapter Dataset http://repository.vnu.edu.vn/handle/VNU_123/10983 application/pdf Journal of Approximation Theory |
institution |
Vietnam National University, Hanoi |
building |
VNU Library & Information Center |
country |
Vietnam |
collection |
VNU Digital Repository |
topic |
Adaptive sampling recovery; Continuous n-sampling algorithm; B-spline quasi-interpolant representation; Besov space |
spellingShingle |
Adaptive sampling recovery; Continuous n-sampling algorithm; B-spline quasi-interpolant representation; Besov space Dinh Dũng Continuous algorithms in adaptive sampling recovery |
description |
We study optimal algorithms in adaptive continuous sampling recovery of smooth functions defined on the unit d-cube Id≔[0,1]d. Functions to be recovered are in Besov space . The recovery error is measured in the quasi-norm ‖⋅‖q of . For a set A⊂Lq, we define a sampling algorithm of recovery with the free choice of sample points and recovering functions from A as follows. For each , we choose n sample points which define n sampled values of f. Based on these sample points and sampled values, we choose a function from A for recovering f. The choice of n sample points and a recovering function from A for each defines an n-sampling algorithm . We suggest a new approach to investigate the optimal adaptive sampling recovery by in the sense of continuous non-linear n-widths which is related to n-term approximation. If Φ={φk}k∈K is a family of functions in Lq, let Σn(Φ) be the non-linear set of linear combinations of n free terms from Φ. Denote by G the set of all families Φ such that the intersection of Φ with any finite dimensional subspace in Lq is a finite set, and by the set of all continuous mappings from into Lq. We define the quantity
For 0<p,q,θ≤∞ and α>d/p, we prove the asymptotic order |
format |
Book Book chapter Dataset |
author |
Dinh Dũng |
author_facet |
Dinh Dũng |
author_sort |
Dinh Dũng |
title |
Continuous algorithms in adaptive sampling recovery |
title_short |
Continuous algorithms in adaptive sampling recovery |
title_full |
Continuous algorithms in adaptive sampling recovery |
title_fullStr |
Continuous algorithms in adaptive sampling recovery |
title_full_unstemmed |
Continuous algorithms in adaptive sampling recovery |
title_sort |
continuous algorithms in adaptive sampling recovery |
publisher |
Journal of Approximation Theory |
publishDate |
2016 |
url |
http://repository.vnu.edu.vn/handle/VNU_123/10983 |
_version_ |
1680963685109989376 |