Các phương pháp giải toán hình học tổ hợp

Chương này trình bày các phương pháp cơ bản được vận dụng để giải các bài toán hình học tổ hợp như: Nguyên lí Đirichlê; nguyên lí cực hạn; phương pháp đồ thị, tô màu; phương pháp tạo đa giác bao; phương pháp mở rộng, thu nhỏ một hình. Ngoài ra phương pháp phản chứng cũng được sử dụng nhiều nhưng đan...

Full description

Saved in:
Bibliographic Details
Main Author: Trần, Thị Liên
Format: Theses and Dissertations
Language:Vietnamese
Published: 2016
Subjects:
Online Access:http://repository.vnu.edu.vn/handle/VNU_123/13619
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Vietnam National University, Hanoi
Language: Vietnamese
Description
Summary:Chương này trình bày các phương pháp cơ bản được vận dụng để giải các bài toán hình học tổ hợp như: Nguyên lí Đirichlê; nguyên lí cực hạn; phương pháp đồ thị, tô màu; phương pháp tạo đa giác bao; phương pháp mở rộng, thu nhỏ một hình. Ngoài ra phương pháp phản chứng cũng được sử dụng nhiều nhưng đan xen cùng các phương pháp khác. Một số dạng toán hình học tổ hợp thường gặp. Chương này đưa ra các bài toán hình học tổ hợp cụ thể, đã được sắp xếp theo từng dạng: Hệ điểm và đường thẳng; điểm nằm trong hình; hình nằm trong hình; phủ hình; hình giao nhau; đếm các yếu tố hình học; đánh giá độ dài, góc, diện tích. Một số bài hình học tổ hợp trong các đề thi. Chương này đưa ra một số bài hình học tổ hợp có trong các đề thi học sinh giỏi lớp 9 các tỉnh, các đề thi tuyển sinh THPT chuyên, các đề thi Olympic Toán học