Support Vector Machines
This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify thre...
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/25624 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
Summary: | This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and their computational efficiency compared to several other methods.
Since their appearance in the early nineties, support vector machines and related kernel-based methods have been successfully applied in diverse fields of application such as bioinformatics, fraud detection, construction of insurance tariffs, direct marketing, and data and text mining. As a consequence, SVMs now play an important role in statistical machine learning and are used not only by statisticians, mathematicians, and computer scientists, but also by engineers and data analysts. |
---|