Markov Decision Processes with Their Applications
Markov decision processes (MDPs), also called stochastic dynamic programming, were first studied in the 1960s. MDPs can be used to model and solve dynamic decision-making problems that are multi-period and occur in stochastic circumstances. There are three basic branches in MDPs: discrete-time MDPs,...
Saved in:
Main Authors: | , |
---|---|
格式: | 圖書 |
語言: | English |
出版: |
Springer
2017
|
主題: | |
在線閱讀: | http://repository.vnu.edu.vn/handle/VNU_123/26523 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Vietnam National University, Hanoi |
語言: | English |
總結: | Markov decision processes (MDPs), also called stochastic dynamic programming, were first studied in the 1960s. MDPs can be used to model and solve dynamic decision-making problems that are multi-period and occur in stochastic circumstances. There are three basic branches in MDPs: discrete-time MDPs, continuous-time MDPs and semi-Markov decision processes. Starting from these three branches, many generalized MDPs models have been applied to various practical problems. These models include partially observable MDPs, adaptive MDPs, MDPs in stochastic environments, and MDPs with multiple objectives, constraints or imprecise parameters. |
---|