Modellistica numerica per problemi differenziali

In questo testo si introducono i concetti di base per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes, e...

全面介紹

Saved in:
書目詳細資料
主要作者: Quarteroni, Alfio
格式: 圖書
語言:English
出版: Springer 2017
主題:
515
在線閱讀:http://repository.vnu.edu.vn/handle/VNU_123/27642
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Vietnam National University, Hanoi
語言: English
實物特徵
總結:In questo testo si introducono i concetti di base per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes, e le leggi di conservazione, e si forniscono numerosi esempi fisici che stanno alla base di tali equazioni. Quindi si analizzano metodi di risoluzione numerica basati su elementi finiti, differenze finite, volumi finiti, metodi spettrali e metodi di decomposizione di domini. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore e si forniscono diversi programmi di semplice utilizzo. Il testo non presuppone una approfondita conoscenza matematica delle equazioni alle derivate parziali: i concetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. Esso è pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Scienze dell'Informazione) e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata.