Conjugate gradient algorithms in nonconvex optimization
This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless an...
Saved in:
Main Author: | Pytlak, Radosław |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/30210 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
Similar Items
-
Optimal transport : old and new
by: Berger, M. ; Eckmann, B. ; Harpe, P. ; Hirzebruch, F. ; Hitchin, N. ; Hörmander, L. ;Kupiainen, A. ; Lebeau, G. ; Ratner, M. ; Serre, D. ;Ya. G. Sinai, N. J. A. Sloane, A. M. Vershik, M. Waldschmidt, Cédric Villani
Published: (2017) -
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization
by: LI, Zhize, et al.
Published: (2022) -
A gradient-free distributed optimization method for convex sum of nonconvex cost functions
by: Pang, Yipeng, et al.
Published: (2023) -
STOCHASTIC BREGMAN GRADIENT-TYPE ALGORITHMS FOR NONCONVEX OPTIMIZATION AND CONVEX-CONCAVE SADDLE POINT PROBLEMS
by: DING KUANGYU
Published: (2023) -
Scalar and asymptotic scalar derivatives : theory and applications
by: Isac, George, et al.
Published: (2017)