Foundations and Applications of Sensor Management

Foundations and Applications of Sensor Management presents the emerging theory of sensor management with applications to real-world examples such as landmine detection, adaptive signal and image sampling, multi-target tracking, and radar waveform scheduling. It is written by leading experts in the f...

Full description

Saved in:
Bibliographic Details
Other Authors: Hero, A.O.
Format: Book
Language:English
Published: Springer 2017
Subjects:
Online Access:http://repository.vnu.edu.vn/handle/VNU_123/30847
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Vietnam National University, Hanoi
Language: English
Description
Summary:Foundations and Applications of Sensor Management presents the emerging theory of sensor management with applications to real-world examples such as landmine detection, adaptive signal and image sampling, multi-target tracking, and radar waveform scheduling. It is written by leading experts in the field for a diverse engineering audience ranging from signal processing, to automatic control, statistics, and machine learning. The level of treatment of the book is tutorial and self-contained. The chapters of the book follow a logical development from theoretical foundations to approximate approaches and ending with applications. The coverage includes the following topics: stochastic control foundations of sensor management; multi-armed bandits and their connections to sensor management; information-theoretic approaches; managed sensing for multi-target tracking; approximation methods based on embedded simulation; active learning for classification and sampling; and waveform scheduling for radar. An appendix is included to provide essential background on topics the reader may not have encountered as a first-year graduate student: Markov decision processes; information theory; and stopping times. Foundations and Applications of Sensor Management is an important reference for signal processing and control engineers and researchers as well as machine learning application developers.