Moduli in modern mapping theory
The purpose of this book is to present modern developments and applications of the techniques of modulus or extremal length of path families in the study of m- n pings in R , n? 2, and in metric spaces. The modulus method was initiated by Lars Ahlfors and Arne Beurling to study conformal mappings. L...
Saved in:
Other Authors: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/31993 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
Summary: | The purpose of this book is to present modern developments and applications of the techniques of modulus or extremal length of path families in the study of m- n pings in R , n? 2, and in metric spaces. The modulus method was initiated by Lars Ahlfors and Arne Beurling to study conformal mappings. Later this method was extended and enhanced by several other authors. The techniques are geom- ric and have turned out to be an indispensable tool in the study of quasiconformal and quasiregular mappings as well as their generalizations. The book is based on rather recent research papers and extends the modulus method beyond the classical applications of the modulus techniques presented in many monographs. Helsinki O. Martio Donetsk V. Ryazanov Haifa U. Srebro Holon E. Yakubov 2007 Contents 1 Introduction and |
---|