A nonlinear transfer technique for renorming

Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem....

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Moltó, Aníbal ; Orihuela, José ; Troyanski, Stanimir ; Valdivia, Manuel
التنسيق: كتاب
اللغة:English
منشور في: Springer 2017
الموضوعات:
الوصول للمادة أونلاين:http://repository.vnu.edu.vn/handle/VNU_123/32010
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem. Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Frechet differentiable. This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis.