Extension of a Result of Huneke and Miller
Let k be the ground field k and X = (xo,... , x n ) be indeterminates. Let I be a graded ideal of k[x]. In [2], [3] there are formulas to determine the Betti numbers and multiplicity of R / I . Now we want to give an extension and a new simple proof about a result of Huneke and Miller and we also c...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
H. : ĐHQGHN
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://repository.vnu.edu.vn/handle/VNU_123/57854 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Let k be the ground field k and X = (xo,... , x n ) be indeterminates. Let I be a graded ideal of k[x]. In [2], [3] there are formulas to determine the Betti numbers and
multiplicity of R / I . Now we want to give an extension and a new simple proof about a result of Huneke and Miller and we also consider the algebra with minimal multiplicity. |
---|