Combustion synthesis of Ni doped SnO2 nanoparticles for applications in Zn-composite coating on mild steel

Zinc (Zn)-composite coatings are still in demand as good corrosion barrier coatings to protect steel substrates from corrosion environment. In this article, the Ni doped SnO2 nanoparticles were synthesized and used as a composite additive for Zn-coating. The synthesis was carried out by the combus...

Full description

Saved in:
Bibliographic Details
Main Authors: Deepa, K., Venkatesha, T.V.
Format: Article
Language:English
Published: H. : ĐHQGHN 2019
Subjects:
Online Access:http://repository.vnu.edu.vn/handle/VNU_123/67304
https://doi.org/10.1016/j.jsamd.2018.11.005
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Vietnam National University, Hanoi
Language: English
Description
Summary:Zinc (Zn)-composite coatings are still in demand as good corrosion barrier coatings to protect steel substrates from corrosion environment. In this article, the Ni doped SnO2 nanoparticles were synthesized and used as a composite additive for Zn-coating. The synthesis was carried out by the combustion method using citric acid as a fuel. The Zn-Ni doped SnO2 composite coating was produced on mild steel by an electroplating technique. The surface characterization and elemental analysis of the coated samples were examined by X-ray diffraction spectroscopy (XRD), scanning electron microscopic images (SEM) followed by energy dispersive spectroscopy (EDAX). The surface morphology of Zn-Ni doped SnO2 composite before and after corrosion showed a more compact surface structure with respect to the pure Zn-coat. The corrosion resistance property of the Zn-Ni doped SnO2 composite coating was studied by Tafel polarization and electrochemical impedance spectroscopy.