Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes
Herein, we report the use of Multi Wall Carbon Nano Tubes (MWCNTs) as nano-compatibilizers based on their astonishing mechanical properties and ease of processing. To fabricate laminate samples, pure MWCNTs were homogeneously dispersed in the fiber-reinforced plastic (FRP) composite with 0, 0.5, 1 a...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/67819 https://doi.org/10.1016/j.jsamd.2019.03.003 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
id |
oai:112.137.131.14:VNU_123-67819 |
---|---|
record_format |
dspace |
spelling |
oai:112.137.131.14:VNU_123-678192019-10-14T08:40:48Z Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes Behera, Rohit Pratyush Rawat, Prashant Singh, K.K. Ha, Sung Kyu Gaurav, Anand Tiwari, Santosh K. Mechanical properties MWCNTs Fiber-reinforced plastic Tensile strength Compressive strength ILSS properties Failure modes Herein, we report the use of Multi Wall Carbon Nano Tubes (MWCNTs) as nano-compatibilizers based on their astonishing mechanical properties and ease of processing. To fabricate laminate samples, pure MWCNTs were homogeneously dispersed in the fiber-reinforced plastic (FRP) composite with 0, 0.5, 1 and 1.5 wt. % loading. The laminates were prepared with eight plies (4.0 ± 0.1 mm thickness) using the hand layup technique assisted by the compression moulding method. It was found that the tensile, compressive and inter-laminar shear strength (ILSS) increase by 103.81%, 139.78% and 36.06%, respectively corresponding to 1 wt. % loading of MWCNTs as compared to neat GFRP specimen. However, a rapid decrease in strength beyond 1 wt. % loading of MWCNTs has been noted. Interestingly, the maximum of the tensile strength was higher than that of the compressive strength, and the maximum of the tensile modulus was larger than that of the compressive modulus in the case of 1 wt. % loading of MWCNTs. It was observed that after a certain loading, the mechanical properties of such laminates can only reach the best value with an optimum loading of MWCNTs. In addition, the micromechanical failure modes and effect of MWCNTs loading on internal morphologies of the composites were also intensively explored with the help of Field Emission Scanning Electron Microscopic (FESEM) analysis 2019-10-14T08:40:48Z 2019-10-14T08:40:48Z 2019 Article Behera, R . P ., et al. (2019). Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes. Journal of Science: Advanced Materials and Devices 4 (2019) 299-309 2468-2179 http://repository.vnu.edu.vn/handle/VNU_123/67819 https://doi.org/10.1016/j.jsamd.2019.03.003 en Journal of Science: Advanced Materials and Devices; application/pdf Elsevier |
institution |
Vietnam National University, Hanoi |
building |
VNU Library & Information Center |
country |
Vietnam |
collection |
VNU Digital Repository |
language |
English |
topic |
Mechanical properties MWCNTs Fiber-reinforced plastic Tensile strength Compressive strength ILSS properties Failure modes |
spellingShingle |
Mechanical properties MWCNTs Fiber-reinforced plastic Tensile strength Compressive strength ILSS properties Failure modes Behera, Rohit Pratyush Rawat, Prashant Singh, K.K. Ha, Sung Kyu Gaurav, Anand Tiwari, Santosh K. Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
description |
Herein, we report the use of Multi Wall Carbon Nano Tubes (MWCNTs) as nano-compatibilizers based on their astonishing mechanical properties and ease of processing. To fabricate laminate samples, pure MWCNTs were homogeneously dispersed in the fiber-reinforced plastic (FRP) composite with 0, 0.5, 1 and 1.5 wt. % loading. The laminates were prepared with eight plies (4.0 ± 0.1 mm thickness) using the hand layup technique assisted by the compression moulding method. It was found that the tensile, compressive and inter-laminar shear strength (ILSS) increase by 103.81%, 139.78% and 36.06%, respectively corresponding to 1 wt. % loading of MWCNTs as compared to neat GFRP specimen. However, a rapid decrease in strength beyond 1 wt. % loading of MWCNTs has been noted. Interestingly, the maximum of the tensile strength was higher than that of the compressive strength, and the maximum of the tensile modulus was larger than that of the compressive modulus in the case of 1 wt. % loading of MWCNTs. It was observed that after a certain loading, the mechanical properties of such laminates can only reach the best value with an optimum loading of MWCNTs. In addition, the micromechanical failure modes and effect of MWCNTs loading on internal morphologies of the composites were also intensively explored with the help of Field Emission Scanning Electron Microscopic (FESEM) analysis |
format |
Article |
author |
Behera, Rohit Pratyush Rawat, Prashant Singh, K.K. Ha, Sung Kyu Gaurav, Anand Tiwari, Santosh K. |
author_facet |
Behera, Rohit Pratyush Rawat, Prashant Singh, K.K. Ha, Sung Kyu Gaurav, Anand Tiwari, Santosh K. |
author_sort |
Behera, Rohit Pratyush |
title |
Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
title_short |
Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
title_full |
Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
title_fullStr |
Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
title_full_unstemmed |
Fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
title_sort |
fracture analysis and mechanical properties of three phased glass/ epoxy laminates reinforced with multiwalled carbon nanotubes |
publisher |
Elsevier |
publishDate |
2019 |
url |
http://repository.vnu.edu.vn/handle/VNU_123/67819 https://doi.org/10.1016/j.jsamd.2019.03.003 |
_version_ |
1680965152166379520 |