Postbuckling Behavior of Functionally Graded Multilayer Graphene Nanocomposite Plate under Mechanical and Thermal Loads on Elastic Foundations

This paper presents an analytical approach to postbuckling behaviors of functionally graded multilayer nanocomposite plates reinforced by a low content of graphene platelets (GPLs) using the first order shear deformation theory, stress function and von Karman-type nonlinear kinematics and include th...

Full description

Saved in:
Bibliographic Details
Main Authors: Pham, Hong Cong, Nguyen, Dinh Duc
Format: Article
Language:English
Published: H. : ĐHQGHN 2020
Subjects:
Online Access:http://repository.vnu.edu.vn/handle/VNU_123/68404
https://doi.org/10.25073/2588-1140/vnunst.4972
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Vietnam National University, Hanoi
Language: English
Description
Summary:This paper presents an analytical approach to postbuckling behaviors of functionally graded multilayer nanocomposite plates reinforced by a low content of graphene platelets (GPLs) using the first order shear deformation theory, stress function and von Karman-type nonlinear kinematics and include the effect of an initial geometric imperfection. The weight fraction of GPL nano fillers is assumed to be constant in each individual GPL-reinforced composite (GPLRC). The modified Halpin-Tsai micromechanics model that takes into account the GPL geometry effect is adopted to estimate the effective Young’s modulus of GPLRC layers. The plate is assumed to resting on Pasternak foundation model and subjected to mechanical and thermal loads. The results show the influences of the GPL distribution pattern, weight fraction, geometry, elastic foundations, mechanical and temperature loads on the postbuckling behaviors of FG multilayer GPLRC plates