Study of structure transition and crystallization of amorphous silica under compression

In this work, we use molecular dynamic (MD) simulation to study the structure transition and crystallization of amorphous silica (SiO2) under compression. The structural evolution of amorphous SiO2 is explained through radial distribution function, coordination number distribution, bond angle distri...

全面介紹

Saved in:
書目詳細資料
Main Authors: Giap, Thi Thuy Trang, Pham, Huu Kien
格式: Article
語言:English
出版: H. : ĐHQGHN 2020
主題:
在線閱讀:http://repository.vnu.edu.vn/handle/VNU_123/89118
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this work, we use molecular dynamic (MD) simulation to study the structure transition and crystallization of amorphous silica (SiO2) under compression. The structural evolution of amorphous SiO2 is explained through radial distribution function, coordination number distribution, bond angle distribution and visualization. Simulation result shown that there is a structural transformation from tetrahedral to octahedral network through SiO5 units. In the 5-15 GPa pressure range, structural transformation occurs powerfully and there are three structural phases corresponding to SiO4-, SiO5-, and SiO6- ones. At 15 GPa, octahedral-network (SiO6) is dominant. It is the first time we showed that when pressure is higher than 20 GPa, octahedral-network of amorphous SiO2 has a tendency to transform to stishovite crystalline phase.