Ứng dụng các mô hình học sâu vào kĩ thuật lọc cộng tác dựa trên mô hình cho các hệ thống khuyến nghị thương mại

Trong quá trình phát triển của ngành thương mại bán lẻ hàng hóa, dịch vụ, vấn đề nắm bắt thị hiếu, sở thích của người tiêu dùng là một vấn đề có tính nền tảng, sống còn của ngành mà bất kì người bán lẻ nào nếu muốn tồn tại trong thương trường đều cần phải giải quyết thật tốt. Trước khi máy tính r...

Full description

Saved in:
Bibliographic Details
Main Author: Trần, Anh Dũng
Other Authors: Trần, Trọng Hiếu
Format: Theses and Dissertations
Language:Vietnamese
Published: 2020
Subjects:
Online Access:http://repository.vnu.edu.vn/handle/VNU_123/99367
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Vietnam National University, Hanoi
Language: Vietnamese
Description
Summary:Trong quá trình phát triển của ngành thương mại bán lẻ hàng hóa, dịch vụ, vấn đề nắm bắt thị hiếu, sở thích của người tiêu dùng là một vấn đề có tính nền tảng, sống còn của ngành mà bất kì người bán lẻ nào nếu muốn tồn tại trong thương trường đều cần phải giải quyết thật tốt. Trước khi máy tính ra đời, những người bán lẻ đã thực hiện nhiều biện pháp để ghi nhận thói quen của người tiêu dùng như sử dụng các hóa đơn bán hàng để xem xét các mặt hàng thường được mua sắm cùng nhau, phỏng vấn người mua về sở thích mua sắm của họ để từ đó đưa ra những biện pháp giúp tối đa hóa doanh thu, tối ưu hóa chi phí của doanh nghiệp. Ví dụ, khi đi vào một cửa hàng sách quen thuộc, chủ cửa hàng sẽ giới thiệu cho người khách một vài quyển sách hoặc tờ báo mà người khách đó có thể quan tâm dựa trên sở thích hoặc thói quen của khách. Đề xuất một mô hình được đặt tên là Deep Collaborative Filtering (DeepCF) dựa trên khung lọc cộng tác noron (Neural Collaborative Filtering framework), cài đặt và thử nghiệm mô hình đề xuất.