Adaptable pseudo random number generator
Stochastic simulation incorporates random variables in the simulation model. In order to create random variables, pseudo random number generators are used. These pseudo random number generators use standard statistical probability distributions, it only approximates real process behavior. This resea...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2009
|
Online Access: | https://animorepository.dlsu.edu.ph/etd_bachelors/14429 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etd_bachelors-15071 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etd_bachelors-150712021-11-03T07:33:11Z Adaptable pseudo random number generator Africa, Danilo, Jr. Alborte, David John T. Chua Yap, Marc Derrick T. Kapahi, Manesh D. Stochastic simulation incorporates random variables in the simulation model. In order to create random variables, pseudo random number generators are used. These pseudo random number generators use standard statistical probability distributions, it only approximates real process behavior. This research aims to generate a probability distribution based in real data given by a sample set and using it to generate the needed random numbers. In doing so, the accuracy of the input distribution should be improved. 2009-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_bachelors/14429 Bachelor's Theses English Animo Repository |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
description |
Stochastic simulation incorporates random variables in the simulation model. In order to create random variables, pseudo random number generators are used. These pseudo random number generators use standard statistical probability distributions, it only approximates real process behavior. This research aims to generate a probability distribution based in real data given by a sample set and using it to generate the needed random numbers. In doing so, the accuracy of the input distribution should be improved. |
format |
text |
author |
Africa, Danilo, Jr. Alborte, David John T. Chua Yap, Marc Derrick T. Kapahi, Manesh D. |
spellingShingle |
Africa, Danilo, Jr. Alborte, David John T. Chua Yap, Marc Derrick T. Kapahi, Manesh D. Adaptable pseudo random number generator |
author_facet |
Africa, Danilo, Jr. Alborte, David John T. Chua Yap, Marc Derrick T. Kapahi, Manesh D. |
author_sort |
Africa, Danilo, Jr. |
title |
Adaptable pseudo random number generator |
title_short |
Adaptable pseudo random number generator |
title_full |
Adaptable pseudo random number generator |
title_fullStr |
Adaptable pseudo random number generator |
title_full_unstemmed |
Adaptable pseudo random number generator |
title_sort |
adaptable pseudo random number generator |
publisher |
Animo Repository |
publishDate |
2009 |
url |
https://animorepository.dlsu.edu.ph/etd_bachelors/14429 |
_version_ |
1718382513190076416 |