An application of graph theory and integer programming: Chessboard non-attacking puzzles

This paper is an exposition of the theorems given in the article An Application of Graph Theory and Integer Programming: Chessboard Non-attacking puzzles by L.R. Foulds and D.G. Johnston. Problems in chess such as: Where in the chessboard can a piece be placed so that it will not be attacked by anot...

Full description

Saved in:
Bibliographic Details
Main Authors: Dela Merced, Cherie P., Delos Santos, Nadja Barbra P.G.
Format: text
Language:English
Published: Animo Repository 1991
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_bachelors/15971
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
Description
Summary:This paper is an exposition of the theorems given in the article An Application of Graph Theory and Integer Programming: Chessboard Non-attacking puzzles by L.R. Foulds and D.G. Johnston. Problems in chess such as: Where in the chessboard can a piece be placed so that it will not be attacked by another piece of the same kind? and What is the maximum number of pieces of the same kind can be placed on a chessboard so that they will not attack each other are discussed. Solutions are presented using Graph Theory and Integer Programming.