Which rectangular chessboards have a knight's tour?

This study will try to determine which chessboards can hold a knight's tour. A knight's tour is formed when a knight, starting from any point on the board, visits each cell exactly once and ends on the starting cell using knight moves--usual moves of a knight in chess. To solve the problem...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Laureola, Lorenz M., Monzon, Arturo B.
التنسيق: text
اللغة:English
منشور في: Animo Repository 1993
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/etd_bachelors/16119
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: De La Salle University
اللغة: English
الوصف
الملخص:This study will try to determine which chessboards can hold a knight's tour. A knight's tour is formed when a knight, starting from any point on the board, visits each cell exactly once and ends on the starting cell using knight moves--usual moves of a knight in chess. To solve the problem, we construct a graph G(m,n), where m and n are positive integers, wherein the square cells of a chessboard are represented by the vertices of the graph. Two vertices are joined by an edge if there exists a knight move from one to the other. In Graph Theory, a knight's tour is equivalent to a Hamiltonian cycle. Extension of existing tours in G(m,n) too G(m,n+4) are shown in the paper together with nine examples of knight's tours on different sized graphs necessary for the solution.