Profiling young adults and adolescents based on risk behaviors using latent class analysis

Numerous literatures have stressed that detection of risk behaviors can assist a person towards reducing injury. Latent Class Analysis (LCA) was used in determining the optimal number of latent classes for six risk indicators variables: alcohol consumption in a day, cigarette smoking in a day, marij...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Sison, Coleen Kate S., Soriano, Katrine Joyce A.
التنسيق: text
اللغة:English
منشور في: Animo Repository 2018
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/etd_bachelors/18580
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: De La Salle University
اللغة: English
الوصف
الملخص:Numerous literatures have stressed that detection of risk behaviors can assist a person towards reducing injury. Latent Class Analysis (LCA) was used in determining the optimal number of latent classes for six risk indicators variables: alcohol consumption in a day, cigarette smoking in a day, marijuana use in the past 30 days, number of sexual partners for the past 3 months, depression, and suicidal ideation. The analysis has resulted to four distinct latent classes: High Risk, Low Risk, Poor Mental Health, and Legal Substance User. The respondents were profiled using the Multiple-Group LCA, and the output has provided the prevalence of each socio-demographic trait (e.g. age, sex, family structure, social support, occupational status and socio-economic status) among the four latent classes formed.