A multi-objective mathematical model for reservoir operation scheduling with hydroelectric power generation, sediment level maintenance and water quality considerations
A major focus of water resources planning and management is the use of optimization techniques in dam and reservoir operation. Generally dam and reservoir operation has relied on heuristic procedures, rule curves, and even subjective operator judgment. A large number of stakeholders with different c...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2008
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_bachelors/5116 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
Summary: | A major focus of water resources planning and management is the use of optimization techniques in dam and reservoir operation. Generally dam and reservoir operation has relied on heuristic procedures, rule curves, and even subjective operator judgment. A large number of stakeholders with different concerns and objectives for water use create conflict among the system policies and procedures, and to find balanced solutions optimization techniques have been used. The thesis proposes the advancement of general reservoir operation into a multiple optimized strategy for integrating different decisions on water use. The main contribution is a multi-objective mathematical model that integrates short-term decisions on water allocation, hydroelectric power generation, flood control, water quality maintenance, and long-term decisions on sediment management and maintenance of useful reservoir storage capacity in a multi-period stochastic network, incorporating the use of probabilistic water inflow forecasting. The model framework is tested and validated using Premium Solver and GAMS and tried against related literatures, reservoir and inflow data, and hydrological relationships. The study is able to show how a mathematical model could be used to determine the appropriate operations schedule of a hypothetical reservoir system, wherein water and electricity supply and allocation is maximized, and flooding levels, water quality, and sediment buildup is kept in check, and the total system cost is minimized. The results of this study could be used for both short term and long term planning wherein the system achieves a sustainable capacity for its reservoir in the long run without any foreseeable adverse effects on the normal operations of the dam. |
---|