Building an improved emotion recognition system for affective learning via brainwaves signals
Multiple studies show that emotions can be extracted from Electroencephalogram (EEG) signals. In order to achieve a high recognition rate, feature extraction techniques must be properly applied when working with brainwave signals. Of these techniques, the more commonly used are statistical features...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2014
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_bachelors/5559 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
Summary: | Multiple studies show that emotions can be extracted from Electroencephalogram (EEG) signals. In order to achieve a high recognition rate, feature extraction techniques must be properly applied when working with brainwave signals. Of these techniques, the more commonly used are statistical features and Fast Fourier transform. Such feature extraction however, was only able to achieve the highest recognition rate of 67. |
---|