Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange
Delisting is the removal of a listed security from the exchange where it is traded. Its drawbacks extend to the liquidity status of the shareholder, access to funding sources, and immediate assessment of the enterprise, which could possibly result in financial loss and consumer confidence reduction....
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2017
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_bachelors/6464 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etd_bachelors-7108 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etd_bachelors-71082021-07-23T07:40:41Z Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange Abrero, Jan Paul Ringo S. Beltran, Alexander Christoph P. Limsui, Rainne Chelsea O. Yeung, Kharl Christian T. Delisting is the removal of a listed security from the exchange where it is traded. Its drawbacks extend to the liquidity status of the shareholder, access to funding sources, and immediate assessment of the enterprise, which could possibly result in financial loss and consumer confidence reduction. With this, the study explores the predicting capabilities of Altman Z-score model, logistic regression analysis and artificial neural network on the probability of corporate delisting in the Philippine Stock Exchange (PSE). With a sample of twenty-six (26) delisted corporations and seventy-eight (78) publicly-listed corporations from 1995-2016, the researchers employed a machine learning approach to identify the most effective predictive model. Using T-test and chi-squared test, results showed that quick ratio (QUICK), total debt to equity ratio (DEBTEQ), and degree of financial leverage (DFL) were statistically significant and listing status was only statistically dependent to minimum public ownership compliance (MPO). Empirical results showed that artificial neural network was the most effective model with 77.42% accuracy and 67.00% precision using whole data set one (1) prior to delisting and 70.97% accuracy and 56.67% precision using whole data set two (2) years prior to delisting. 2017-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_bachelors/6464 Bachelor's Theses English Animo Repository Business enterprises--Philippines--Finance Business enterprises--Philippines Finance and Financial Management |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
topic |
Business enterprises--Philippines--Finance Business enterprises--Philippines Finance and Financial Management |
spellingShingle |
Business enterprises--Philippines--Finance Business enterprises--Philippines Finance and Financial Management Abrero, Jan Paul Ringo S. Beltran, Alexander Christoph P. Limsui, Rainne Chelsea O. Yeung, Kharl Christian T. Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
description |
Delisting is the removal of a listed security from the exchange where it is traded. Its drawbacks extend to the liquidity status of the shareholder, access to funding sources, and immediate assessment of the enterprise, which could possibly result in financial loss and consumer confidence reduction.
With this, the study explores the predicting capabilities of Altman Z-score model, logistic regression analysis and artificial neural network on the probability of corporate delisting in the Philippine Stock Exchange (PSE). With a sample of twenty-six (26) delisted corporations and seventy-eight (78) publicly-listed corporations from 1995-2016, the researchers employed a machine learning approach to identify the most effective predictive model. Using T-test and chi-squared test, results showed that quick ratio (QUICK), total debt to equity ratio (DEBTEQ), and degree of financial leverage (DFL) were statistically significant and listing status was only statistically dependent to minimum public ownership compliance (MPO). Empirical results showed that artificial neural network was the most effective model with 77.42% accuracy and 67.00% precision using whole data set one (1) prior to delisting and 70.97% accuracy and 56.67% precision using whole data set two (2) years prior to delisting. |
format |
text |
author |
Abrero, Jan Paul Ringo S. Beltran, Alexander Christoph P. Limsui, Rainne Chelsea O. Yeung, Kharl Christian T. |
author_facet |
Abrero, Jan Paul Ringo S. Beltran, Alexander Christoph P. Limsui, Rainne Chelsea O. Yeung, Kharl Christian T. |
author_sort |
Abrero, Jan Paul Ringo S. |
title |
Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
title_short |
Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
title_full |
Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
title_fullStr |
Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
title_full_unstemmed |
Forward-looking: A machine learning approach in predicting corporate delisting in the Philippine Stock Exchange |
title_sort |
forward-looking: a machine learning approach in predicting corporate delisting in the philippine stock exchange |
publisher |
Animo Repository |
publishDate |
2017 |
url |
https://animorepository.dlsu.edu.ph/etd_bachelors/6464 |
_version_ |
1772834836117979136 |