The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane

Although economically affordable and readily available, metallic nickel-based catalysts are very susceptible to deactivation during catalysis. Previous studies have found that altering the composition of the catalytic material affects the performance and activity of the catalyst. This study aimed to...

Full description

Saved in:
Bibliographic Details
Main Authors: Bernardo, Gian Paolo O., Bio, Patrick A., Li, Laddee L.
Format: text
Language:English
Published: Animo Repository 2009
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_bachelors/8530
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
id oai:animorepository.dlsu.edu.ph:etd_bachelors-9175
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:etd_bachelors-91752021-08-23T02:06:19Z The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane Bernardo, Gian Paolo O. Bio, Patrick A. Li, Laddee L. Although economically affordable and readily available, metallic nickel-based catalysts are very susceptible to deactivation during catalysis. Previous studies have found that altering the composition of the catalytic material affects the performance and activity of the catalyst. This study aimed to demonstrate the direct effect of nickel loading (5%, 10%, 15% and 20% [w/w]) on the activity of Ni/MgO-ZrO2 catalyst. The nickel metal precursor was impregnated on a mixture of MgO-ZrO2 by dry impregnation, were calcined for 16 hours at 850C and were reduced for 1.5 hours under a stream of 10% H2/He at 500C. Catalyst characterization was done using AAS, XRD, EDX, SEM and BET methods. The acidity and basicity of catalysts were determined using NH3-TPD and CO2-TPD respectively. Results from the study showed that surface area and pore volume decreased as nickel loading increased to 15% but increased slightly when nickel loading was increased to 20%. Results were further confirmed by SEM results and pore size distribution from BET results. Likewise, EDX results confirmed a close to 1:1 mole ratio of MgO/ZrO2. From XRD results, it was observed that solid solutions formed for all catalysts from calcination at 850C, and that the amount of solid-solution formed increased with loading. The results from AAS reported that the catalysts contained Ni loading from 5.56-14.14.27%. Basic sites decreased while acidic sites increased with increasing Ni loading. The time course activity test for methane dry reforming at 850C enabled the determination of catalyst activity through conversion, H2/CO ratio, stability, yield, and the rate of reaction. Actual conversion was greater than equilibrium conversion indicates that other side reactions are also taking place which aids in the further conversion of methane throughout the activity test. Post characterization enabled the determination of the presence of surface carbon that has deposited during reaction. Results obtained from characterization and activity testing showed that 5% Ni loading is the most suitable for the dry reforming of methane. 2009-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_bachelors/8530 Bachelor's Theses English Animo Repository Nickel Catalysis Catalyst supports Methane Greenhouse gases
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
language English
topic Nickel
Catalysis
Catalyst supports
Methane
Greenhouse gases
spellingShingle Nickel
Catalysis
Catalyst supports
Methane
Greenhouse gases
Bernardo, Gian Paolo O.
Bio, Patrick A.
Li, Laddee L.
The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
description Although economically affordable and readily available, metallic nickel-based catalysts are very susceptible to deactivation during catalysis. Previous studies have found that altering the composition of the catalytic material affects the performance and activity of the catalyst. This study aimed to demonstrate the direct effect of nickel loading (5%, 10%, 15% and 20% [w/w]) on the activity of Ni/MgO-ZrO2 catalyst. The nickel metal precursor was impregnated on a mixture of MgO-ZrO2 by dry impregnation, were calcined for 16 hours at 850C and were reduced for 1.5 hours under a stream of 10% H2/He at 500C. Catalyst characterization was done using AAS, XRD, EDX, SEM and BET methods. The acidity and basicity of catalysts were determined using NH3-TPD and CO2-TPD respectively. Results from the study showed that surface area and pore volume decreased as nickel loading increased to 15% but increased slightly when nickel loading was increased to 20%. Results were further confirmed by SEM results and pore size distribution from BET results. Likewise, EDX results confirmed a close to 1:1 mole ratio of MgO/ZrO2. From XRD results, it was observed that solid solutions formed for all catalysts from calcination at 850C, and that the amount of solid-solution formed increased with loading. The results from AAS reported that the catalysts contained Ni loading from 5.56-14.14.27%. Basic sites decreased while acidic sites increased with increasing Ni loading. The time course activity test for methane dry reforming at 850C enabled the determination of catalyst activity through conversion, H2/CO ratio, stability, yield, and the rate of reaction. Actual conversion was greater than equilibrium conversion indicates that other side reactions are also taking place which aids in the further conversion of methane throughout the activity test. Post characterization enabled the determination of the presence of surface carbon that has deposited during reaction. Results obtained from characterization and activity testing showed that 5% Ni loading is the most suitable for the dry reforming of methane.
format text
author Bernardo, Gian Paolo O.
Bio, Patrick A.
Li, Laddee L.
author_facet Bernardo, Gian Paolo O.
Bio, Patrick A.
Li, Laddee L.
author_sort Bernardo, Gian Paolo O.
title The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
title_short The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
title_full The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
title_fullStr The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
title_full_unstemmed The effect of nickel loading on the catalytic activity of Ni/MgO-ZrO2 catalyst for the dry reforming of methane
title_sort effect of nickel loading on the catalytic activity of ni/mgo-zro2 catalyst for the dry reforming of methane
publisher Animo Repository
publishDate 2009
url https://animorepository.dlsu.edu.ph/etd_bachelors/8530
_version_ 1712576970381852672