On the construction of LCD codes over certain finite rings

Linear codes with complementary duals (LCD codes) are linear codes that intersect with their duals trivially. This paper presents some construction of LCD codes over finite fields applying Massey's characterization of LCD codes. We construct some classes of binary LCD codes using the permutatio...

Full description

Saved in:
Bibliographic Details
Main Author: Lina, Eusebio R., Jr.
Format: text
Language:English
Published: Animo Repository 2016
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_doctoral/482
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
id oai:animorepository.dlsu.edu.ph:etd_doctoral-1481
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:etd_doctoral-14812021-08-20T00:29:44Z On the construction of LCD codes over certain finite rings Lina, Eusebio R., Jr. Linear codes with complementary duals (LCD codes) are linear codes that intersect with their duals trivially. This paper presents some construction of LCD codes over finite fields applying Massey's characterization of LCD codes. We construct some classes of binary LCD codes using the permutation matrix and the all one matrix. Explicit construction of generator matrices of LCD codes using the generator matrices of self-dual codes and binary Hamming codes are given. We also revisit some known methods of combining two or more codes such us direct product, direct sum and Plotkin sum and determine whether such methods when applied to LCD codes will give rise to new LCD codes.This paper also examines LCD codes over the nite non-chain rings R2 = F2 + vF2 + v2F2 and Rp = Fp + vFp + v2Fp, where v3 = v and p is an odd prime. We construct LCD codes over F2 and Fp as Gray images of LCD codes over R2 and Rp, respectively. In addition, we give necessary and su cient conditions for linear codes over R2 and Rp to be LCD.Finally, we examine the LCD-ness of skew cyclic codes. Let Fq be a finite field of order q and be an automorphism on Fq. A skew cyclic code over Fq is a linear code C with the property that if (a0 a1 : : : an{u100000}1) 2 C, then ( (an{u100000}1) (a0) : : : (an{u100000}2)) 2 C. In this study, we give some conditions for a skew cyclic code to have a complementary viii dual. To this end, we revisit the properties of a noncommutative skew polynomial ring Fq[x ] of automorphism type and examine the algebraic structure of skew cyclic code using its skew polynomial representation. Using the result that skew cyclic codes are left ideals of the ring Fq[x ]=hxn{u100000}1i, we derive a characterization of a skew cyclic LCD code of length n. 2016-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_doctoral/482 Dissertations English Animo Repository Algebras Linear Mathematics
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
language English
topic Algebras
Linear
Mathematics
spellingShingle Algebras
Linear
Mathematics
Lina, Eusebio R., Jr.
On the construction of LCD codes over certain finite rings
description Linear codes with complementary duals (LCD codes) are linear codes that intersect with their duals trivially. This paper presents some construction of LCD codes over finite fields applying Massey's characterization of LCD codes. We construct some classes of binary LCD codes using the permutation matrix and the all one matrix. Explicit construction of generator matrices of LCD codes using the generator matrices of self-dual codes and binary Hamming codes are given. We also revisit some known methods of combining two or more codes such us direct product, direct sum and Plotkin sum and determine whether such methods when applied to LCD codes will give rise to new LCD codes.This paper also examines LCD codes over the nite non-chain rings R2 = F2 + vF2 + v2F2 and Rp = Fp + vFp + v2Fp, where v3 = v and p is an odd prime. We construct LCD codes over F2 and Fp as Gray images of LCD codes over R2 and Rp, respectively. In addition, we give necessary and su cient conditions for linear codes over R2 and Rp to be LCD.Finally, we examine the LCD-ness of skew cyclic codes. Let Fq be a finite field of order q and be an automorphism on Fq. A skew cyclic code over Fq is a linear code C with the property that if (a0 a1 : : : an{u100000}1) 2 C, then ( (an{u100000}1) (a0) : : : (an{u100000}2)) 2 C. In this study, we give some conditions for a skew cyclic code to have a complementary viii dual. To this end, we revisit the properties of a noncommutative skew polynomial ring Fq[x ] of automorphism type and examine the algebraic structure of skew cyclic code using its skew polynomial representation. Using the result that skew cyclic codes are left ideals of the ring Fq[x ]=hxn{u100000}1i, we derive a characterization of a skew cyclic LCD code of length n.
format text
author Lina, Eusebio R., Jr.
author_facet Lina, Eusebio R., Jr.
author_sort Lina, Eusebio R., Jr.
title On the construction of LCD codes over certain finite rings
title_short On the construction of LCD codes over certain finite rings
title_full On the construction of LCD codes over certain finite rings
title_fullStr On the construction of LCD codes over certain finite rings
title_full_unstemmed On the construction of LCD codes over certain finite rings
title_sort on the construction of lcd codes over certain finite rings
publisher Animo Repository
publishDate 2016
url https://animorepository.dlsu.edu.ph/etd_doctoral/482
_version_ 1772835375296806912