The terwilliger algebra of a distance-regular graph
This dissertation deals with the Terwilliger algebra of a distance-regular graph.The study has two main parts. The first part studies the Terwilliger algebra of the D-cube QD, also known as hypercube. Let X denote the vertex set of QD. Fix x e X, and let T=T(x) denote its associated Terwilliger alge...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
1999
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_doctoral/812 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etd_doctoral-1811 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etd_doctoral-18112021-05-14T05:37:16Z The terwilliger algebra of a distance-regular graph Go, Junie T. This dissertation deals with the Terwilliger algebra of a distance-regular graph.The study has two main parts. The first part studies the Terwilliger algebra of the D-cube QD, also known as hypercube. Let X denote the vertex set of QD. Fix x e X, and let T=T(x) denote its associated Terwilliger algebra. T is shown as the subalgebra of Matx (C) generated by the adjacency matrix A and a diagonal matrix A*=A*(x), where A* has yy entry D-2a(x,y) for all y e X. A, A* satisfyA2A*-2AA*+A*A2 = 4A*,A*2-2A*AA*+AA*2 = 4AUsing the above equations, the irreducible T-modules is found. For each irreducible T-module W, two orthogonal bases are displayed, the standard basis and the dual standard basis. Action of A and A* are described on these basis. The transition matrix is given from the standard basis to the dual standard basis. The multiplicity with which each irreducible T-module W appears in is computed. An elementary proof that QD has the Q-polynomial property is given. T, a homomorphic image of the universal enveloping algebra of the Lie algebra sl2 (C) is shown. The center of T is described. The second part of this dissertation studies the Terwilliger algebra of a tight distance-regular graph. Let r = (X,R) denote a distance-regular graph with diameter D greater than or equal to 3. Fix x e C, and let T - T(x) denote its associated Terwilliger algebra. We associate two integer parameters: the endpoint and the diameter, to each irreducible T-module. It turns out that the dimension of such a module is at least one more than its diameter. Whenever equality is attained, the module is said to be thin. To each irreducible T-module of endpoint 1 and diameter D-2, another real parameter, the type is associated. The assumption now is that r is tight. The r is shown to have at least one irreducible T-module of type 1, at least one irreducible T-module of type D, and up to isomorphism, no other irreducible T-modules of endpoint 1. Each type is shown to be thin and has diameter D-2. The multiplicity with which each module appears inCx is computed. 1999-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_doctoral/812 Dissertations English Animo Repository Graph theory Algebra Polynomials Algebra |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
topic |
Graph theory Algebra Polynomials Algebra |
spellingShingle |
Graph theory Algebra Polynomials Algebra Go, Junie T. The terwilliger algebra of a distance-regular graph |
description |
This dissertation deals with the Terwilliger algebra of a distance-regular graph.The study has two main parts. The first part studies the Terwilliger algebra of the D-cube QD, also known as hypercube. Let X denote the vertex set of QD. Fix x e X, and let T=T(x) denote its associated Terwilliger algebra. T is shown as the subalgebra of Matx (C) generated by the adjacency matrix A and a diagonal matrix A*=A*(x), where A* has yy entry D-2a(x,y) for all y e X. A, A* satisfyA2A*-2AA*+A*A2 = 4A*,A*2-2A*AA*+AA*2 = 4AUsing the above equations, the irreducible T-modules is found. For each irreducible T-module W, two orthogonal bases are displayed, the standard basis and the dual standard basis. Action of A and A* are described on these basis. The transition matrix is given from the standard basis to the dual standard basis. The multiplicity with which each irreducible T-module W appears in is computed. An elementary proof that QD has the Q-polynomial property is given. T, a homomorphic image of the universal enveloping algebra of the Lie algebra sl2 (C) is shown. The center of T is described.
The second part of this dissertation studies the Terwilliger algebra of a tight distance-regular graph. Let r = (X,R) denote a distance-regular graph with diameter D greater than or equal to 3. Fix x e C, and let T - T(x) denote its associated Terwilliger algebra. We associate two integer parameters: the endpoint and the diameter, to each irreducible T-module. It turns out that the dimension of such a module is at least one more than its diameter. Whenever equality is attained, the module is said to be thin. To each irreducible T-module of endpoint 1 and diameter D-2, another real parameter, the type is associated. The assumption now is that r is tight. The r is shown to have at least one irreducible T-module of type 1, at least one irreducible T-module of type D, and up to isomorphism, no other irreducible T-modules of endpoint 1. Each type is shown to be thin and has diameter D-2. The multiplicity with which each module appears inCx is computed. |
format |
text |
author |
Go, Junie T. |
author_facet |
Go, Junie T. |
author_sort |
Go, Junie T. |
title |
The terwilliger algebra of a distance-regular graph |
title_short |
The terwilliger algebra of a distance-regular graph |
title_full |
The terwilliger algebra of a distance-regular graph |
title_fullStr |
The terwilliger algebra of a distance-regular graph |
title_full_unstemmed |
The terwilliger algebra of a distance-regular graph |
title_sort |
terwilliger algebra of a distance-regular graph |
publisher |
Animo Repository |
publishDate |
1999 |
url |
https://animorepository.dlsu.edu.ph/etd_doctoral/812 |
_version_ |
1772835377409687552 |