Highly oxidized graphene oxide as carbocatalyst for the multicomponent synthesis of triazoloquinazolines

The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, the roles and functionality of Lewis acid sites remain elusive. Herein, we report a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters...

全面介紹

Saved in:
書目詳細資料
主要作者: Ebajo, Virgilio D., Jr.
格式: text
語言:English
出版: Animo Repository 2019
主題:
在線閱讀:https://animorepository.dlsu.edu.ph/etd_doctoral/1446
https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=2497&context=etd_doctoral
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: De La Salle University
語言: English
實物特徵
總結:The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, the roles and functionality of Lewis acid sites remain elusive. Herein, we report a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters in a series of multicomponent synthesis of triazoloquinazolinone compounds. The GOs possessing the highest degree of oxidation, also having the highest amounts of Lewis acid sites, enable optimal yields (up to 95%) under mild and non-toxic reaction conditions (85oC in EtOH). The results of FT-IR spectroscopy, temperature-programmed decomposition mass spectrometry, and X-ray photoelectron spectroscopy identified that the apparent Lewis acidity via basal plane epoxide ring-opening, on top of the saturated Brønsted acidic carboxylic groups, is responsible for the enhanced carbocatalytic activities involving Knoevenagel condensation pathway. Recycled GO can be effectively regenerated to reach 97% activity of fresh GO, supporting the recognition of GO as pseudocatalyst in organic synthesis.