Fingerprint identification using neural networks

Abstract. Being a unique characteristic of every human being, a person's fingerprints are useful as a reliable identifying element in a person identification system. Neural networks, though already an old technology (circa 1960's), has recently gained interest for its possible benefits in...

Full description

Saved in:
Bibliographic Details
Main Authors: Lim, Edison Y., Ong, Johann L., Tan, Carl Frederick, Tiu, Christine G. G., Yuvienco, Mary Frances Therese B.
Format: text
Language:English
Published: Animo Repository 1994
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_honors/153
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
Description
Summary:Abstract. Being a unique characteristic of every human being, a person's fingerprints are useful as a reliable identifying element in a person identification system. Neural networks, though already an old technology (circa 1960's), has recently gained interest for its possible benefits in applications requiring simulated human intelligence. Here, the two concepts are linked to create a fingerprint identification system using neural networks. The system consists of a video camera as the capture device for black fingerprint impressions on paper. The camera output is fed to a digitizer and the image data is saved using the TIFF format. The image is later processed by an 80486 PC. Image processing routines written in C improve the quality of the images and convert them into the required format for input to the neural network. The neural network software, also written in C, is the fingerprint identifying engine of the system. The applicability of two types of neural networks, namely the backpropagation network and self-organizing map (SOM), was tested.