Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane

Methane steam reforming is a well-established process for production of hydrogen a source of clean energy since this process produces a high H2/CO among many methane reforming reactions. However, the high temperature conditions in the industry cause some demerits, and uneconomical due to large energ...

Full description

Saved in:
Bibliographic Details
Main Author: Nguyen, Thu Hoai
Format: text
Language:English
Published: Animo Repository 2006
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_masteral/3542
https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10380/viewcontent/CDTG004366_P.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
id oai:animorepository.dlsu.edu.ph:etd_masteral-10380
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:etd_masteral-103802022-03-28T05:12:48Z Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane Nguyen, Thu Hoai Methane steam reforming is a well-established process for production of hydrogen a source of clean energy since this process produces a high H2/CO among many methane reforming reactions. However, the high temperature conditions in the industry cause some demerits, and uneconomical due to large energy consumption. Utilizing the right support material for nickel based catalyst may lead to higher conversion at relatively low temperature. In this study, nickel based catalysts on various JRC-zirconia with different surface area as well as ceria addition were prepared and characterized. At the same time, the catalytic activity at low temperature of 600oC in the steam reforming process was studied. The nickel and cerium addition were prepared by wet impregnation method with 10wt.% of nickel loading whereas three concentrations of cerium of 5wt%, 10wt.% and 15wt% of cerium were applied on the zirconia. The catalysts were characterized by BET, EDX, AAS, SEM, XRD and TPD technique to verify the surface area, actual nickel content loading, morphology and structure as well as the acid-base properties of the catalysts. The results showed that wet impregnation was effective to disperse the nickel on the surface of zirconia. Calcination process decreased the surface areas of the catalysts and caused for the agglomeration of nickel on the surface of the samples. XRD results confirmed the presence of two dominant phases tetragonal and monoclinic depending on the type of zirconia. Nickel oxide interacted and incorporated into the surface of support materials. The highest basic sites and acid sites density were found out on the Ni-Z-3 catalyst. The acid sites decreased and basic sites increased in the case of promoted catalysts. Steam reforming reaction was carried out in a micro-quartz tube reactor. The methane reacted catalytically with the steam at the H2O/CH4 ration of 3. Water was ii injected to an evaporator by a syringe pump. The investigation of time-course activity tests were conducted in 5 hours with 20-minute time intervals. Among nickel based catalysts with different zirconia types, Ni-Z-3 gave the highest average percent methane conversion at reaction temperature. The above catalyst was followed by Ni- Z-2 and Ni-Z-4, and Ni-Z-5 performed the poorest among the group. The catalyst having higher activity in term of methane conversion exhibited lower H2/CO selectivity since the side water gas shift reaction occurred. Thus, Ni-Z-5 had the highest H2/CO selectivity of 7.128. And the addition of ceria improved the performance of the catalyst. Regarding three concentration of ceria content, C-10-Ni- Z-3 showed the highest percent methane conversion, followed closely by C-5-Ni-Z-3 and C-15-Ni-Z-3. 2006-01-01T08:00:00Z text application/pdf https://animorepository.dlsu.edu.ph/etd_masteral/3542 https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10380/viewcontent/CDTG004366_P.pdf Master's Theses English Animo Repository Zirconium oxide Methane Catalytic reforming Synthesis gas Scanning electron microscopy Chemical Engineering
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
language English
topic Zirconium oxide
Methane
Catalytic reforming
Synthesis gas
Scanning electron microscopy
Chemical Engineering
spellingShingle Zirconium oxide
Methane
Catalytic reforming
Synthesis gas
Scanning electron microscopy
Chemical Engineering
Nguyen, Thu Hoai
Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
description Methane steam reforming is a well-established process for production of hydrogen a source of clean energy since this process produces a high H2/CO among many methane reforming reactions. However, the high temperature conditions in the industry cause some demerits, and uneconomical due to large energy consumption. Utilizing the right support material for nickel based catalyst may lead to higher conversion at relatively low temperature. In this study, nickel based catalysts on various JRC-zirconia with different surface area as well as ceria addition were prepared and characterized. At the same time, the catalytic activity at low temperature of 600oC in the steam reforming process was studied. The nickel and cerium addition were prepared by wet impregnation method with 10wt.% of nickel loading whereas three concentrations of cerium of 5wt%, 10wt.% and 15wt% of cerium were applied on the zirconia. The catalysts were characterized by BET, EDX, AAS, SEM, XRD and TPD technique to verify the surface area, actual nickel content loading, morphology and structure as well as the acid-base properties of the catalysts. The results showed that wet impregnation was effective to disperse the nickel on the surface of zirconia. Calcination process decreased the surface areas of the catalysts and caused for the agglomeration of nickel on the surface of the samples. XRD results confirmed the presence of two dominant phases tetragonal and monoclinic depending on the type of zirconia. Nickel oxide interacted and incorporated into the surface of support materials. The highest basic sites and acid sites density were found out on the Ni-Z-3 catalyst. The acid sites decreased and basic sites increased in the case of promoted catalysts. Steam reforming reaction was carried out in a micro-quartz tube reactor. The methane reacted catalytically with the steam at the H2O/CH4 ration of 3. Water was ii injected to an evaporator by a syringe pump. The investigation of time-course activity tests were conducted in 5 hours with 20-minute time intervals. Among nickel based catalysts with different zirconia types, Ni-Z-3 gave the highest average percent methane conversion at reaction temperature. The above catalyst was followed by Ni- Z-2 and Ni-Z-4, and Ni-Z-5 performed the poorest among the group. The catalyst having higher activity in term of methane conversion exhibited lower H2/CO selectivity since the side water gas shift reaction occurred. Thus, Ni-Z-5 had the highest H2/CO selectivity of 7.128. And the addition of ceria improved the performance of the catalyst. Regarding three concentration of ceria content, C-10-Ni- Z-3 showed the highest percent methane conversion, followed closely by C-5-Ni-Z-3 and C-15-Ni-Z-3.
format text
author Nguyen, Thu Hoai
author_facet Nguyen, Thu Hoai
author_sort Nguyen, Thu Hoai
title Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
title_short Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
title_full Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
title_fullStr Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
title_full_unstemmed Effect of zirconia types and addition of ceria on Ni/ZrO2 catalyst for low temperature steam reforming of methane
title_sort effect of zirconia types and addition of ceria on ni/zro2 catalyst for low temperature steam reforming of methane
publisher Animo Repository
publishDate 2006
url https://animorepository.dlsu.edu.ph/etd_masteral/3542
https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10380/viewcontent/CDTG004366_P.pdf
_version_ 1781418163993313280