An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane

Reverse-flow operation has been recognized as suitable for weakly exothermic reactions, such as partial oxidation of methane (POM) to produce syngas. Many studies on reverse-flow reactor have been conducted. However, not many investigations have been extensively done on the effect of start-up condit...

Full description

Saved in:
Bibliographic Details
Main Author: Cam Tuan, Huy Phan
Format: text
Language:English
Published: Animo Repository 2008
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_masteral/3732
https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=10570&context=etd_masteral
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
id oai:animorepository.dlsu.edu.ph:etd_masteral-10570
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:etd_masteral-105702022-06-15T03:22:02Z An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane Cam Tuan, Huy Phan Reverse-flow operation has been recognized as suitable for weakly exothermic reactions, such as partial oxidation of methane (POM) to produce syngas. Many studies on reverse-flow reactor have been conducted. However, not many investigations have been extensively done on the effect of start-up conditions and procedures on the reverse-flow reactor. This study, therefore, aims to understand the behavior of the catalytic reverse-flow reactor in start-up stage. Reverse-flow operation has been presented since the 70s as a means to carry out reactions in a fixed-bed of catalyst. The cost of production could be considerably decreased by employing a reverse-flow system. In some recent decades, the reverse-low reactor has been paid much attention. However, the operation, especially the start-up procedure and initial conditions were only reported sparsely in few studies. Although, it is proved that the start-up procedure and initial conditions have the very important effect to determine the final state in other kind of the reactor. By analyzing the modeling of reverse-flow reactor, the start-up procedure and initial conditions were recognized that they also affects to final state of reactor. Therefore the experiment on reverse-flow reactor which focused on the start-up procedure and initial conditions was done to obtain the similar effects to the modeling. The catalyst used for the reverse-flow reactor was Ni/MgO/ -Al2O3 catalyst which was coated on the structure monolith surface by wash-coating. The effects of initial temperature (500, 600, 650, 700, 800oC), start-up procedures and operating parameters (flow rate, ratio of methane and oxygen, switching time) on the start-up behavior of reverse-flow reactor was investigated. The reactor temperature was measured by the thermocouple at two positions: at the center and at the boundary of the catalyst, which were recorded by a data logger. The concentration of the product (outlet gas) was analyzed by gas chromatography (GC). Based on the recorded temperature and GC results, the cyclic steady state was determined. The results showed that the initial temperature profile had a significant effect on the ignition of the reactor and the final state of the reverse-flow reactor. It also affect on the transition to cyclic steady state. At the lower flowrate, the effect was obvious: the number of half cycles necessary to approach cyclic steady state increased with increasing initial temperature. The effect of the procedure by which the feed gases were introduced into the reactor was also investigated. The results did not indicate any obvious difference for the final cyclic steady state when changing the start-up procedure. 2008-01-01T08:00:00Z text application/pdf https://animorepository.dlsu.edu.ph/etd_masteral/3732 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=10570&context=etd_masteral Master's Theses English Animo Repository Synthesis gas Syngas Oxidation Methane Chemical Engineering
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
language English
topic Synthesis gas
Syngas
Oxidation
Methane
Chemical Engineering
spellingShingle Synthesis gas
Syngas
Oxidation
Methane
Chemical Engineering
Cam Tuan, Huy Phan
An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
description Reverse-flow operation has been recognized as suitable for weakly exothermic reactions, such as partial oxidation of methane (POM) to produce syngas. Many studies on reverse-flow reactor have been conducted. However, not many investigations have been extensively done on the effect of start-up conditions and procedures on the reverse-flow reactor. This study, therefore, aims to understand the behavior of the catalytic reverse-flow reactor in start-up stage. Reverse-flow operation has been presented since the 70s as a means to carry out reactions in a fixed-bed of catalyst. The cost of production could be considerably decreased by employing a reverse-flow system. In some recent decades, the reverse-low reactor has been paid much attention. However, the operation, especially the start-up procedure and initial conditions were only reported sparsely in few studies. Although, it is proved that the start-up procedure and initial conditions have the very important effect to determine the final state in other kind of the reactor. By analyzing the modeling of reverse-flow reactor, the start-up procedure and initial conditions were recognized that they also affects to final state of reactor. Therefore the experiment on reverse-flow reactor which focused on the start-up procedure and initial conditions was done to obtain the similar effects to the modeling. The catalyst used for the reverse-flow reactor was Ni/MgO/ -Al2O3 catalyst which was coated on the structure monolith surface by wash-coating. The effects of initial temperature (500, 600, 650, 700, 800oC), start-up procedures and operating parameters (flow rate, ratio of methane and oxygen, switching time) on the start-up behavior of reverse-flow reactor was investigated. The reactor temperature was measured by the thermocouple at two positions: at the center and at the boundary of the catalyst, which were recorded by a data logger. The concentration of the product (outlet gas) was analyzed by gas chromatography (GC). Based on the recorded temperature and GC results, the cyclic steady state was determined. The results showed that the initial temperature profile had a significant effect on the ignition of the reactor and the final state of the reverse-flow reactor. It also affect on the transition to cyclic steady state. At the lower flowrate, the effect was obvious: the number of half cycles necessary to approach cyclic steady state increased with increasing initial temperature. The effect of the procedure by which the feed gases were introduced into the reactor was also investigated. The results did not indicate any obvious difference for the final cyclic steady state when changing the start-up procedure.
format text
author Cam Tuan, Huy Phan
author_facet Cam Tuan, Huy Phan
author_sort Cam Tuan, Huy Phan
title An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
title_short An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
title_full An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
title_fullStr An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
title_full_unstemmed An investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
title_sort investigation on the effect of the start-up condition on reverse-flow monolith reactor for production of sysgas by partial oxidation of methane
publisher Animo Repository
publishDate 2008
url https://animorepository.dlsu.edu.ph/etd_masteral/3732
https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=10570&context=etd_masteral
_version_ 1736864138455416832