An empirical comparative analysis of clustering algorithms for big data applications
Big data is a vaguely defined term that describes a dataset as either too large or too complex to analyze and get satisfactory results. Clustering algorithms are a possible solution to this problem of big data, where they can be categorized according to one or more of three clustering objectives. Th...
Saved in:
主要作者: | Delos Santos, Duke Danielle T. |
---|---|
格式: | text |
語言: | English |
出版: |
Animo Repository
2017
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/etd_masteral/5395 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
語言: | English |
相似書籍
-
Tune Up Fuzzy C-Means for Big Data: Some Novel Hybrid Clustering Algorithms Based on Initial Selection and Incremental Clustering
由: Le, Hoang Son, et al.
出版: (2019) -
Economics and econophysics in the era of Big Data
由: Cheong, Siew Ann
出版: (2017) -
Precision medicine and big data : the application of an ethics framework for big data in health and research
由: Schaefer, G. Owen, et al.
出版: (2020) -
FROM RAW DATA TO PROCESSABLE INFORMATIVE DATA: TRAINING DATA MANAGEMENT FOR BIG DATA ANALYTICS
由: GAO JINYANG
出版: (2017) -
Big data applications in governance and policy
由: Giest, S., et al.
出版: (2021)