Conversion of waste coffee grounds into 5-hydroxymethylfurfural and carbon-copper nanocomposite

In the last decade, the increasing oil demand and exhaustion of reserves have initiated stimulus to search for new and sustainable sources of fuels, materials and fine chemicals. Lignocellulosic biomass turned out to be a promising and renewable feedstock for these application. In this study, 5-hydr...

全面介紹

Saved in:
書目詳細資料
主要作者: Ganado, Rey Joseph J.
格式: text
語言:English
出版: Animo Repository 2019
主題:
在線閱讀:https://animorepository.dlsu.edu.ph/etd_masteral/5836
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: De La Salle University
語言: English
實物特徵
總結:In the last decade, the increasing oil demand and exhaustion of reserves have initiated stimulus to search for new and sustainable sources of fuels, materials and fine chemicals. Lignocellulosic biomass turned out to be a promising and renewable feedstock for these application. In this study, 5-hydroxymethyfurfural (HMF), a platform chemical for the production of a broad range of fuels and chemicals, was synthesized from waste coffee ground (WCG) using a Bronsted-Lewis acid combination (B-L acid), as catalyst, in a highly aqueous binary solvent of Hâ‚‚O-DMSO by microwave irradiation. The highest HMF yield form WCG was observed using 6:4 Hâ‚‚O:DMSO (v/v) solvent ration. A response surface methodology showed that microwave power was the significant factor for higher HMF yield, followed by catalysts loading and reaction time. A yield up to 13.65% was obtained from WCG using 0.03 mmol of catalysts, 250W of microwave power and 20 minutes of reaction time. Moreover, the residue formed during WCG conversion was transformed into carbon-copper nanocomposite (CCN) by horizontal vapor phase growth (HVPG). The resulting CCN was characterized by SEM-EDX and Raman. This study demonstrates for the first time a complete utilization of WCG to produce chemicals and bio-based material, providing another reference for valorization of biomasses.