Neural networks vision system for an automated tuna quality sorter

This paper aims to develop the applicability of using Vision System and Neural Networks using a PC-based software to control an off-line multi-input, multi-input automated tuna quality sorting system. Initially, tuna is loaded on a belt conveyor running at a constant speed. Each time a tuna passes a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Bautista, Jose Jaime M., Jr.
التنسيق: text
اللغة:English
منشور في: Animo Repository 2001
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/etd_masteral/2608
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: De La Salle University
اللغة: English
الوصف
الملخص:This paper aims to develop the applicability of using Vision System and Neural Networks using a PC-based software to control an off-line multi-input, multi-input automated tuna quality sorting system. Initially, tuna is loaded on a belt conveyor running at a constant speed. Each time a tuna passes a first set of photo-sensors, a video camera installed overhead is triggered to capture its image. The captured image of the tuna is transformed into a data using image-processing algorithms, processed and analyzed by an IBM-PC that determines the quality of the tuna. As the belt conveyor continuously moves toward the end of the line, the tuna again passes another set of sensors that activate the flipper arm to move on the desired position and allow the tuna to slide to its corresponding bin.