Universal robust vehicle identification system
With the exponential rise in vehicular traffic volume, an intelligent system that is able to detect and classify would be essential. Image processing has already placed its significance for real-world applications on machine learning, one of which is traffic analysis. Through this study, the researc...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2022
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etdb_ece/20 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1022&context=etdb_ece |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etdb_ece-1022 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etdb_ece-10222022-12-20T01:48:48Z Universal robust vehicle identification system Alfonso, Lorenz Joshua Sebastian Benitez, Tiffany Joy Ferrer Cabalquinto, Cseanne Jaycons Original Perez, Francis Jerome Tabieros Yang, Janet With the exponential rise in vehicular traffic volume, an intelligent system that is able to detect and classify would be essential. Image processing has already placed its significance for real-world applications on machine learning, one of which is traffic analysis. Through this study, the researchers developed a system that allows vehicular tracking and identification using the methods of neural networks for object detection, specifically the YOLOv5 algorithm. The process involved system training and testing programmed in the Python environment. The system training utilized an initial dataset generated by the researchers that eliminated the manual intervention of image annotation. The developed system was intervened under the conditions of two different locations. It showed its detection and recognition capabilities through the integrated system features, namely, counting, vehicle type classification, and traffic condition assessment. A region of interest (ROI) line was the primary basis for counting, and a lane-per-lane evaluation was displayed. These features were analyzed individually, between the actual and detected and wrong and correct detections. On the features of vehicle class and type identification, and detection count, the Video 1, Video 2 and Video 3 got an accuracy percentage of 83%, 90% and 90%, respectively, for vehicle classification, 94%,100%, and 97%, respectively for type of vehicle, 81%, 82% and 82%, respectively for color and 93%, 93% and 97% for detection count, respectively. The increasing trend on accuracy proves the efficiency of the fine-tuning process implemented on the system implementation except for the color that requires a separate training process. After the last finetuning process, an accuracy of 92.57% for vehicle class, 93% for type identification, 82% for 2022-12-10T08:00:00Z text application/pdf https://animorepository.dlsu.edu.ph/etdb_ece/20 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1022&context=etdb_ece Electronics And Communications Engineering Bachelor's Theses English Animo Repository Vehicle detectors Image converters Electrical and Computer Engineering |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
topic |
Vehicle detectors Image converters Electrical and Computer Engineering |
spellingShingle |
Vehicle detectors Image converters Electrical and Computer Engineering Alfonso, Lorenz Joshua Sebastian Benitez, Tiffany Joy Ferrer Cabalquinto, Cseanne Jaycons Original Perez, Francis Jerome Tabieros Yang, Janet Universal robust vehicle identification system |
description |
With the exponential rise in vehicular traffic volume, an intelligent system that is able to detect and classify would be essential. Image processing has already placed its significance for real-world applications on machine learning, one of which is traffic analysis. Through this study, the researchers developed a system that allows vehicular tracking and identification using the methods of neural networks for object detection, specifically the YOLOv5 algorithm. The process involved system training and testing programmed in the Python environment. The system training utilized an initial dataset generated by the researchers that eliminated the manual intervention of image annotation. The developed system was intervened under the conditions of two different locations. It showed its detection and recognition capabilities through the integrated system features, namely, counting, vehicle type classification, and traffic condition assessment. A region of interest (ROI) line was the primary basis for counting, and a lane-per-lane evaluation was displayed. These features were analyzed individually, between the actual and detected and wrong and correct detections. On the features of vehicle class and type identification, and detection count, the Video 1, Video 2 and Video 3 got an accuracy percentage of 83%, 90% and 90%, respectively, for vehicle classification, 94%,100%, and 97%, respectively for type of vehicle, 81%, 82% and 82%, respectively for color and 93%, 93% and 97% for detection count, respectively. The increasing trend on accuracy proves the efficiency of the fine-tuning process implemented on the system implementation except for the color that requires a separate training process. After the last finetuning process, an accuracy of 92.57% for vehicle class, 93% for type identification, 82% for |
format |
text |
author |
Alfonso, Lorenz Joshua Sebastian Benitez, Tiffany Joy Ferrer Cabalquinto, Cseanne Jaycons Original Perez, Francis Jerome Tabieros Yang, Janet |
author_facet |
Alfonso, Lorenz Joshua Sebastian Benitez, Tiffany Joy Ferrer Cabalquinto, Cseanne Jaycons Original Perez, Francis Jerome Tabieros Yang, Janet |
author_sort |
Alfonso, Lorenz Joshua Sebastian |
title |
Universal robust vehicle identification system |
title_short |
Universal robust vehicle identification system |
title_full |
Universal robust vehicle identification system |
title_fullStr |
Universal robust vehicle identification system |
title_full_unstemmed |
Universal robust vehicle identification system |
title_sort |
universal robust vehicle identification system |
publisher |
Animo Repository |
publishDate |
2022 |
url |
https://animorepository.dlsu.edu.ph/etdb_ece/20 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1022&context=etdb_ece |
_version_ |
1753806441345449984 |