Effectiveness of the Philippine Stock Exchange Index (PSEi) as training dataset in forecasting Philippine stock prices using neural networks

The health of the stock market is considered critical to a country’s economic development. The volatility of stock prices which are influenced by inflation rates, interest rates, tax changes, and other monetary policies, makes the prediction and analysis a very challenging task. With the use of adva...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Sumayo, Noriel Kristine Luzanta, Ting, Nico Rafael Ayo
التنسيق: text
اللغة:English
منشور في: Animo Repository 2022
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/etdb_math/20
https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1019&context=etdb_math
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The health of the stock market is considered critical to a country’s economic development. The volatility of stock prices which are influenced by inflation rates, interest rates, tax changes, and other monetary policies, makes the prediction and analysis a very challenging task. With the use of advanced intelligent techniques such as deep learning, we can improve stock market prediction. In this study, we investigate the effectiveness of using the Philippine Stock Exchange index (PSEi) as a training dataset of three artificial neural networks (ANNs), namely, Multilayer Perceptron (MLP), Long-Short Term Memory (LSTM), and Convolutional Neural Network (CNN) in forecasting the daily closing prices of local stocks AbaCore Capital Holdings, Inc. (ABA) and San Miguel Corporation (SMC). Based on the mean squared error (MSE) and mean absolute percentage error (MAPE), the models using MLP with the activation function of hyperbolic tangent (tanh) are the suitable neural network model for both ABA and SMC.