Approximating complex perplectic matrices by finite products from a finite generating set
For positive integer n, let 𝓜n(ℂ) denote the set of all n x n matrices over ℂ. We say a matrix A in 𝓜n(ℂ) is a complex perplectic matrix whenever A is invertible and A-1=JA*J such that J is the matrix with 1s on the skew-diagonal and 0s everywhere else, and A* is the conjugate-transpose of A. The ma...
Saved in:
主要作者: | Pagaygay, Aaron |
---|---|
格式: | text |
語言: | English |
出版: |
Animo Repository
2021
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/etdm_math/2 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1001&context=etdm_math |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Tridiagonal pairs of Krawtchouk type arising from finite-dimensional irreducible 𝖘𝖔₄-modules
由: Pagaygay, Aaron
出版: (2025) -
A lie algebra related to the universal Askey-Wilson algebra
由: Cantuba, Rafael Reno S.
出版: (2016) -
Lie polynomials in q-deformed Heisenberg algebras
由: Cantuba, Rafael Reno S.
出版: (2019) -
A note on Cramer's rule given a class of "singular" matrices
由: Abueg, Luisito C.
出版: (2012) -
On groups formed from 2 x 2 matrices with entries from Zp
由: Simon, Jose L., Jr., et al.
出版: (2006)