An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position

Radiolabeled fluorinated nucleosides are currently being used as a positron emission tomography (PET) probes. These molecular probes are injected into a research subject to examine specific biochemical and biological processes of a disease. It is also used to investigate in vivo pharmacokinetics and...

Full description

Saved in:
Bibliographic Details
Main Authors: Ong, Sarah Diane C., Yu, Derrick Ethelert C., Nacario, Ruel C., Completo, Gladys C.
Format: text
Published: Animo Repository 2016
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/8876
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
id oai:animorepository.dlsu.edu.ph:faculty_research-10442
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:faculty_research-104422023-04-12T01:07:43Z An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position Ong, Sarah Diane C. Yu, Derrick Ethelert C. Nacario, Ruel C. Completo, Gladys C. Radiolabeled fluorinated nucleosides are currently being used as a positron emission tomography (PET) probes. These molecular probes are injected into a research subject to examine specific biochemical and biological processes of a disease. It is also used to investigate in vivo pharmacokinetics and pharmadodynamics during drug discovery and development. However, current synthetic approaches of PET probes, involves a multi-step process that is extremely difficult, time-consuming and low yielding. Thus, an improved strategy is needed for the synthesis of positron-emitting nucleoside analog PET probes. 2'- (Fluoroarabinofuranosyl) uridine will be synthesized using a series of protection and deprotection at 2'-, 3'-, and 5'- hydroxyl groups of ribose moiety and N-3 position of pyrimidine group of a preformed nucleoside uridine. A cyclic protecting group will be introduced at the 3'- and 5'- position of the ribose sugar to lock the ring in a rigid conformation where the uridine base is not sterically hindering and to permit the topside attack of fluoride. An electron withdrawing protecting group (mesyl chloride or tosyl chloride) will be placed at 2' -OH position followed by the protection at N-3 position using di-tertbutyl dicarbonate. Late stage fluorination using KF will be employed via SN2 mechanism. The desired product could be synthesized in 4 to 5 steps. The proposed synthetic route will be performed under cold (nonradioactive conditions). 2016-04-01T07:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/8876 Faculty Research Work Animo Repository Pyrimidine nucleotides Uridine Tomography, Emission Chemistry
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
topic Pyrimidine nucleotides
Uridine
Tomography, Emission
Chemistry
spellingShingle Pyrimidine nucleotides
Uridine
Tomography, Emission
Chemistry
Ong, Sarah Diane C.
Yu, Derrick Ethelert C.
Nacario, Ruel C.
Completo, Gladys C.
An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
description Radiolabeled fluorinated nucleosides are currently being used as a positron emission tomography (PET) probes. These molecular probes are injected into a research subject to examine specific biochemical and biological processes of a disease. It is also used to investigate in vivo pharmacokinetics and pharmadodynamics during drug discovery and development. However, current synthetic approaches of PET probes, involves a multi-step process that is extremely difficult, time-consuming and low yielding. Thus, an improved strategy is needed for the synthesis of positron-emitting nucleoside analog PET probes. 2'- (Fluoroarabinofuranosyl) uridine will be synthesized using a series of protection and deprotection at 2'-, 3'-, and 5'- hydroxyl groups of ribose moiety and N-3 position of pyrimidine group of a preformed nucleoside uridine. A cyclic protecting group will be introduced at the 3'- and 5'- position of the ribose sugar to lock the ring in a rigid conformation where the uridine base is not sterically hindering and to permit the topside attack of fluoride. An electron withdrawing protecting group (mesyl chloride or tosyl chloride) will be placed at 2' -OH position followed by the protection at N-3 position using di-tertbutyl dicarbonate. Late stage fluorination using KF will be employed via SN2 mechanism. The desired product could be synthesized in 4 to 5 steps. The proposed synthetic route will be performed under cold (nonradioactive conditions).
format text
author Ong, Sarah Diane C.
Yu, Derrick Ethelert C.
Nacario, Ruel C.
Completo, Gladys C.
author_facet Ong, Sarah Diane C.
Yu, Derrick Ethelert C.
Nacario, Ruel C.
Completo, Gladys C.
author_sort Ong, Sarah Diane C.
title An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
title_short An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
title_full An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
title_fullStr An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
title_full_unstemmed An improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
title_sort improved strategy for stereospecific late stage fluorination of a pyrimidine nucleoside at 2'-arabino position
publisher Animo Repository
publishDate 2016
url https://animorepository.dlsu.edu.ph/faculty_research/8876
_version_ 1767196973605060608