Efficient zero ring labeling of graphs
A zero ring is a ring in which the product of any two elements is zero, which is the additive identity. A zero ring labeling of a graph is an assignment of distinct elements of a zero ring to the vertices of the graph such that the sum of the labels of any two adjacent vertices is not the zero eleme...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Animo Repository
2020
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/11208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-10760 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-107602023-11-02T22:53:10Z Efficient zero ring labeling of graphs Chua, Dhenmar E. Campeña, Francis Joseph H. Franco, Floresto A., Jr. A zero ring is a ring in which the product of any two elements is zero, which is the additive identity. A zero ring labeling of a graph is an assignment of distinct elements of a zero ring to the vertices of the graph such that the sum of the labels of any two adjacent vertices is not the zero element in the ring. Given a zero ring labeling of a graph, if the cardinality of the set of distinct sums obtained from all adjacent vertices is equal to the maximum degree of the graph, then the zero ring labeling is efficient. In this paper, we showed the existence of an efficient zero ring labeling for some classes of trees and their disjoint union. In particular, we showed that an efficient zero ring labeling exists for some families of the following classes of trees: path graphs, star graphs, bistars, centipede graphs, caterpillars, spiders, lobsters, and rooted trees. We also showed results for other common classes of graphs. 2020-07-01T07:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/11208 info:doi/10.29020/nybg.ejpam.v13i3.3780 Faculty Research Work Animo Repository Graph labelings Rings (Algebra) Mathematics |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Graph labelings Rings (Algebra) Mathematics |
spellingShingle |
Graph labelings Rings (Algebra) Mathematics Chua, Dhenmar E. Campeña, Francis Joseph H. Franco, Floresto A., Jr. Efficient zero ring labeling of graphs |
description |
A zero ring is a ring in which the product of any two elements is zero, which is the additive identity. A zero ring labeling of a graph is an assignment of distinct elements of a zero ring to the vertices of the graph such that the sum of the labels of any two adjacent vertices is not the zero element in the ring. Given a zero ring labeling of a graph, if the cardinality of the set of distinct sums obtained from all adjacent vertices is equal to the maximum degree of the graph, then the zero ring labeling is efficient. In this paper, we showed the existence of an efficient zero ring labeling for some classes of trees and their disjoint union. In particular, we showed that an efficient zero ring labeling exists for some families of the following classes of trees: path graphs, star graphs, bistars, centipede graphs, caterpillars, spiders, lobsters, and rooted trees. We also showed results for other common classes of graphs. |
format |
text |
author |
Chua, Dhenmar E. Campeña, Francis Joseph H. Franco, Floresto A., Jr. |
author_facet |
Chua, Dhenmar E. Campeña, Francis Joseph H. Franco, Floresto A., Jr. |
author_sort |
Chua, Dhenmar E. |
title |
Efficient zero ring labeling of graphs |
title_short |
Efficient zero ring labeling of graphs |
title_full |
Efficient zero ring labeling of graphs |
title_fullStr |
Efficient zero ring labeling of graphs |
title_full_unstemmed |
Efficient zero ring labeling of graphs |
title_sort |
efficient zero ring labeling of graphs |
publisher |
Animo Repository |
publishDate |
2020 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/11208 |
_version_ |
1781799769643941888 |