Absolute concentration robustness in power law kinetic systems

Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on chemical kinetic systems with deficiency one. In thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Fortun, Noel T., Mendoza, Eduardo R.
Format: text
Published: Animo Repository 2021
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/11317
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on chemical kinetic systems with deficiency one. In this contribution, we use the idea of dynamic equivalence of chemical reaction networks to derive novel results that guarantee ACR for some classes of power law kinetic systems with deficiency zero. Furthermore, using network decomposition, we identify ACR in higher deficiency networks (i.e. deficiency ≥ 2) by considering the presence of a low deficiency subnetwork with ACR. Network decomposition also enabled us to recognize and define a weaker form of concentration robustness than ACR, which we named as ‘balanced concentration robustness’. Finally, we discuss and emphasize our view of ACR as a primarily kinetic character rather than a condition that arises from structural sources.