Expediting the design, discovery and development of anticancer drugs using computational approaches
Cancer is considered as one of the world's leading causes of morbidity and mortality. Over the past four decades, spectacular advances in molecular and cellular biology have led to major breakthroughs in the field of cancer research. However, the design and development of anticancer drugs prove...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2017
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/11456 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-11710 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-117102024-01-16T02:54:38Z Expediting the design, discovery and development of anticancer drugs using computational approaches Basith, Shaherin Cui, Minghua Macalino, Stephani Joy Y. Choi, Sun Cancer is considered as one of the world's leading causes of morbidity and mortality. Over the past four decades, spectacular advances in molecular and cellular biology have led to major breakthroughs in the field of cancer research. However, the design and development of anticancer drugs prove to be an intricate, expensive, and time-consuming process. To overcome these limitations and manage large amounts of emerging data, computer aided drug discovery/design (CADD) methods have been developed. Computational methods can be employed to help and design experiments, and more importantly, elucidate structure-activity relationships to drive drug discovery and lead optimization methods. Structure- and ligand-based drug designs are the most popular methods utilized in CADD. Additionally, the assimilation provided by these two complementary approaches are even more intriguing. Nowadays, the integration of experimental and computational approaches holds great promise in the rapid discovery of novel anticancer therapeutics. In this review, we aim to provide a comprehensive view on the state-of-the-art technologies for computer-assisted anticancer drug development with thriving models from literature. The limitations associated with each traditional in silica method have also been discussed, which can help the reader to rationale the best computational tool for their analysis. In addition, we will also shed some light on the latest advances in the computational approaches for anticancer drug development and conclude with a briefprecis. 2017-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/11456 Faculty Research Work Animo Repository Antineoplastic agents—Computer-aided design Drugs—Design Medicinal-Pharmaceutical Chemistry |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Antineoplastic agents—Computer-aided design Drugs—Design Medicinal-Pharmaceutical Chemistry |
spellingShingle |
Antineoplastic agents—Computer-aided design Drugs—Design Medicinal-Pharmaceutical Chemistry Basith, Shaherin Cui, Minghua Macalino, Stephani Joy Y. Choi, Sun Expediting the design, discovery and development of anticancer drugs using computational approaches |
description |
Cancer is considered as one of the world's leading causes of morbidity and mortality. Over the past four decades, spectacular advances in molecular and cellular biology have led to major breakthroughs in the field of cancer research. However, the design and development of anticancer drugs prove to be an intricate, expensive, and time-consuming process. To overcome these limitations and manage large amounts of emerging data, computer aided drug discovery/design (CADD) methods have been developed. Computational methods can be employed to help and design experiments, and more importantly, elucidate structure-activity relationships to drive drug discovery and lead optimization methods. Structure- and ligand-based drug designs are the most popular methods utilized in CADD. Additionally, the assimilation provided by these two complementary approaches are even more intriguing. Nowadays, the integration of experimental and computational approaches holds great promise in the rapid discovery of novel anticancer therapeutics. In this review, we aim to provide a comprehensive view on the state-of-the-art technologies for computer-assisted anticancer drug development with thriving models from literature. The limitations associated with each traditional in silica method have also been discussed, which can help the reader to rationale the best computational tool for their analysis. In addition, we will also shed some light on the latest advances in the computational approaches for anticancer drug development and conclude with a briefprecis. |
format |
text |
author |
Basith, Shaherin Cui, Minghua Macalino, Stephani Joy Y. Choi, Sun |
author_facet |
Basith, Shaherin Cui, Minghua Macalino, Stephani Joy Y. Choi, Sun |
author_sort |
Basith, Shaherin |
title |
Expediting the design, discovery and development of anticancer drugs using computational approaches |
title_short |
Expediting the design, discovery and development of anticancer drugs using computational approaches |
title_full |
Expediting the design, discovery and development of anticancer drugs using computational approaches |
title_fullStr |
Expediting the design, discovery and development of anticancer drugs using computational approaches |
title_full_unstemmed |
Expediting the design, discovery and development of anticancer drugs using computational approaches |
title_sort |
expediting the design, discovery and development of anticancer drugs using computational approaches |
publisher |
Animo Repository |
publishDate |
2017 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/11456 |
_version_ |
1789485858696462336 |