Some results on finite-by-supersoluble groups
A finite-by-supersoluble group is one having a finite normal subgroup in which the corresponding quotient is supersoluble. This paper presents some charatcrization of this class of groups. We will see later that the class of finite-by-supersoluble groups is closed with respect to the formation of su...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Animo Repository
2007
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/13525 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-13682 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-136822024-12-02T00:54:20Z Some results on finite-by-supersoluble groups Petalcorin, Gaudencio C., Jr. Cossey, John Nochefranca, Luz A finite-by-supersoluble group is one having a finite normal subgroup in which the corresponding quotient is supersoluble. This paper presents some charatcrization of this class of groups. We will see later that the class of finite-by-supersoluble groups is closed with respect to the formation of subgroups and homomorphic images. We also introduce in this paper the notion of a series defined to be a normal series in which the factors are infinite cyclic or finite. By Schreier's Refinement Theorern, the number of infinite cyclic factors in any series is invariant, we call this invariant as the length. The main results of this paper are the following: 1. A group is finite-by-supersoluble if and only if it has a series. 2. A finite-by-supersoluble group is supersoluble-by-finite. 2007-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/13525 Faculty Research Work Animo Repository Group theory Finite groups Algebra Mathematics Physical Sciences and Mathematics |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Group theory Finite groups Algebra Mathematics Physical Sciences and Mathematics |
spellingShingle |
Group theory Finite groups Algebra Mathematics Physical Sciences and Mathematics Petalcorin, Gaudencio C., Jr. Cossey, John Nochefranca, Luz Some results on finite-by-supersoluble groups |
description |
A finite-by-supersoluble group is one having a finite normal subgroup in which the corresponding quotient is supersoluble. This paper presents some charatcrization of this class of groups. We will see later that the class of finite-by-supersoluble groups is closed with respect to the formation of subgroups and homomorphic images.
We also introduce in this paper the notion of a series defined to be a normal series in which the factors are infinite cyclic or finite. By Schreier's Refinement Theorern, the number of infinite cyclic factors in any series is invariant, we call this invariant as the length.
The main results of this paper are the following: 1. A group is finite-by-supersoluble if and only if it has a series. 2. A finite-by-supersoluble group is supersoluble-by-finite. |
format |
text |
author |
Petalcorin, Gaudencio C., Jr. Cossey, John Nochefranca, Luz |
author_facet |
Petalcorin, Gaudencio C., Jr. Cossey, John Nochefranca, Luz |
author_sort |
Petalcorin, Gaudencio C., Jr. |
title |
Some results on finite-by-supersoluble groups |
title_short |
Some results on finite-by-supersoluble groups |
title_full |
Some results on finite-by-supersoluble groups |
title_fullStr |
Some results on finite-by-supersoluble groups |
title_full_unstemmed |
Some results on finite-by-supersoluble groups |
title_sort |
some results on finite-by-supersoluble groups |
publisher |
Animo Repository |
publishDate |
2007 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/13525 |
_version_ |
1818101942087319552 |