Hydrothermal synthesis and characterization of akageneite-type iron oxide octahedral molecular sieves (FeOX-OMS) by direct dissolution and transformation of layered precursor to 2x2 tunnel structure
Iron oxide octahedral molecular sieve with 2x2 tunnel, designated' as FeOx-OMS (2x2) was successfully synthesized through hydrothermal method. FeOx-OMS (2x2) has high degree of purity and higher thermal stability than those of previously reported akaganeite-type materials. The X-ray powder diff...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Animo Repository
2002
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/13357 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Summary: | Iron oxide octahedral molecular sieve with 2x2 tunnel, designated' as FeOx-OMS (2x2) was successfully synthesized through hydrothermal method. FeOx-OMS (2x2) has high degree of purity and higher thermal stability than those of previously reported akaganeite-type materials. The X-ray powder diffraction (XRD) pattern shows peaks that are characteristic of pure akaganeite-system. Based on its TGA profile, it is thermally stable up to 255°C and at 402 °c, a new phase is formed which is a mixture of hematite-magnetite based on its XRD pattern. The SEM result shows a needle-like morphology that is characteristic of a tunnel structure. Another successful route in producing...kaganeite-type material is via transformation of a layered, lepidocrocite-type material precursor referredt o as L-FeOx. Although this tunnel material has a lower thermal stability, which is at 195°C, its XRD pattern shows also a relatively pure akaganeite- type material. It has also a needle-like morphology based on its scanning electron micrograph. |
---|