Associative analysis of inefficiencies and station activity levels in emergency response

Emergency medical services (EMS) around the world face the challenging task of allocating resources to efficiently respond to medical emergencies within a geographical area. While several studies have been done to improve various aspects of EMS, such as ambulance dispatch planning and station placem...

Full description

Saved in:
Bibliographic Details
Main Authors: Tiam-Lee, Thomas James Z., Henriques, Rui, Manquinho, Vasco
Format: text
Published: Animo Repository 2022
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/13071
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:Emergency medical services (EMS) around the world face the challenging task of allocating resources to efficiently respond to medical emergencies within a geographical area. While several studies have been done to improve various aspects of EMS, such as ambulance dispatch planning and station placement optimization, few works have focused on the assessment of existing rich real-world emergency response data to systematically identify areas of improvement. In this paper, we propose DAPI (data-driven analysis of potential response inefficiencies), a general tool for analyzing inefficiencies in emergency response datasets. DAPI efficiently identifies potential response bottlenecks based on spatial distributions of ambulance responses and statistically assesses them with respect to inferred activity levels of relevant dispatch stations to aid causality analysis. DAPI is applied on a dataset containing all medical emergency responses in mainland Portugal, in which we find statistical evidence that inefficiencies are correlated with high levels of activity of stations closer to an emergency location. We present these findings, along with the associated patterns and geographical clusters, serving as a valuable decision support tool to aid EMS in improving their operations.