On the square of an oriented graph conjecture

In 1993, Paul Seymour posed the problem that for every oriented graph G there exist a vertex whose out-degree at least doubles when you square the oriented graph; that is, if G = (V (G), A(G)) and denote δ+G (x) to be the out-degree of vertex x in the graph G, then there exists x ∈ (G) such that δ+(...

全面介紹

Saved in:
書目詳細資料
Main Authors: Campena, Francis Joseph H., Macariola, Francesca, Serapio, Abbygail
格式: text
出版: Animo Repository 2016
主題:
在線閱讀:https://animorepository.dlsu.edu.ph/faculty_research/13458
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!