Pattern matching refinements to dictionary-based code-switching point detection

This study presents the development and evaluation of pattern matching refinements (PMRs) to automatic code switching point (CSP) detection. With all PMRs, evaluation showed an accuracy of 94.51%. This is an improvement to reported accuracy rates of dictionary-based approaches, which are in the rang...

Full description

Saved in:
Bibliographic Details
Main Authors: Oco, Nathaniel, Roxas, Rachel Edita
Format: text
Published: Animo Repository 2012
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/588
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:This study presents the development and evaluation of pattern matching refinements (PMRs) to automatic code switching point (CSP) detection. With all PMRs, evaluation showed an accuracy of 94.51%. This is an improvement to reported accuracy rates of dictionary-based approaches, which are in the range of 75.22%-76.26% (Yeong and Tan, 2010). In our experiments, a 100-sentence Tagalog-English corpus was used as test bed. Analyses showed that the dictionary-based approach using part-of-speech checking yielded an accuracy of 79.76% only, and two notable linguistic phenomena, (1) intra-word code-switching and (2) common words, were shown to have caused the low accuracy. The devised PMRs, namely: (1) common word exclusion, (2) common word identification, and (3) common n-gram pruning address this and showed improved accuracy. The work can be extended using audio files and machine learning with larger language resources. © 2012 The PACLIC.