First principles investigations on fuel cell reactions: H 2-Pt(111) interactions
We determine the effects of having vacancies on the Pt(111) surface to the dissociative adsorption behavior of H2 on Pt(lll). We study the potential energy behaviors along the reaction paths based on the potential energy surfaces (PESs) we calculated that are relevant to these systems. By comparing...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Animo Repository
2008
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/1357 https://animorepository.dlsu.edu.ph/context/faculty_research/article/2356/type/native/viewcontent |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-2356 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-23562022-08-30T02:28:18Z First principles investigations on fuel cell reactions: H 2-Pt(111) interactions Arboleda, Nelson B., Jr. Kasai, Hideaki We determine the effects of having vacancies on the Pt(111) surface to the dissociative adsorption behavior of H2 on Pt(lll). We study the potential energy behaviors along the reaction paths based on the potential energy surfaces (PESs) we calculated that are relevant to these systems. By comparing these results to those of an ideal Pt(111) surface, we find that the vacant sites enhance the surface reactivity by lowering the activation barriers for H2 dissociative adsorption, as shown by several new reactions paths we observed corresponding to near spontaneous reactions. The results also corroborates our earlier findings that of the substrate atoms, the surface (first-layer) atoms mainly influence the behavior of H2 adsorption on Pt(111), and that the onset of H2 dissociation and barrier location are also altered by the presence of vacancies. © 2008 The Surface Science Society of Japan. 2008-05-22T07:00:00Z text text/html https://animorepository.dlsu.edu.ph/faculty_research/1357 https://animorepository.dlsu.edu.ph/context/faculty_research/article/2356/type/native/viewcontent Faculty Research Work Animo Repository Adsorption Hydrogen Potential energy surfaces |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Adsorption Hydrogen Potential energy surfaces |
spellingShingle |
Adsorption Hydrogen Potential energy surfaces Arboleda, Nelson B., Jr. Kasai, Hideaki First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
description |
We determine the effects of having vacancies on the Pt(111) surface to the dissociative adsorption behavior of H2 on Pt(lll). We study the potential energy behaviors along the reaction paths based on the potential energy surfaces (PESs) we calculated that are relevant to these systems. By comparing these results to those of an ideal Pt(111) surface, we find that the vacant sites enhance the surface reactivity by lowering the activation barriers for H2 dissociative adsorption, as shown by several new reactions paths we observed corresponding to near spontaneous reactions. The results also corroborates our earlier findings that of the substrate atoms, the surface (first-layer) atoms mainly influence the behavior of H2 adsorption on Pt(111), and that the onset of H2 dissociation and barrier location are also altered by the presence of vacancies. © 2008 The Surface Science Society of Japan. |
format |
text |
author |
Arboleda, Nelson B., Jr. Kasai, Hideaki |
author_facet |
Arboleda, Nelson B., Jr. Kasai, Hideaki |
author_sort |
Arboleda, Nelson B., Jr. |
title |
First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
title_short |
First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
title_full |
First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
title_fullStr |
First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
title_full_unstemmed |
First principles investigations on fuel cell reactions: H 2-Pt(111) interactions |
title_sort |
first principles investigations on fuel cell reactions: h 2-pt(111) interactions |
publisher |
Animo Repository |
publishDate |
2008 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/1357 https://animorepository.dlsu.edu.ph/context/faculty_research/article/2356/type/native/viewcontent |
_version_ |
1743177797512200192 |