An improved prediction model for bond strength of deformed bars in rc using upv test and artificial neural network

The composite action of reinforcement in the surrounding concrete involve a complex and non-linear mechanism.Inadequate understanding of the underlying interactions may lead to designs with insufficient amount of bond resistance of reinforcing bars in concrete structures.To investigate the effects o...

Full description

Saved in:
Bibliographic Details
Main Authors: Concha, Nolan, Oreta, Andres Winston
Format: text
Published: Animo Repository 2020
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/1891
https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=2890&context=faculty_research
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:The composite action of reinforcement in the surrounding concrete involve a complex and non-linear mechanism.Inadequate understanding of the underlying interactions may lead to designs with insufficient amount of bond resistance of reinforcing bars in concrete structures.To investigate the effects of various parameters on the bond strength of steel bars in concrete, 54 cube samples with varying embedded reinforcements and strengths were prepared. The samples were cured for 28 days and tested using ultrasonic pulse velocity (UPV) test for sample homogeneity and single pull out test for bond strength.Data gathered in the experiment were used in the development of bond strength model as a function of compressive strength, concrete cover to rebar diameter ratio, embedment length, and UPV using artificial neural network (ANN). Of all the bond strength models considered from various literatures, the neural network model provided the most satisfactory prediction results in good agreement with the bond strength values obtained from the experiment. The UPV parameter was found to be one of the most significant predictors in the neural network model having a relative importance of 20.57%. This suggest that the robust prediction performance of the bond model was attributed to this essential component of the model. The proposed model of this study can be used as baseline information and rapid non-destructive assessment for zone wise strengthening in reinforced concrete. ©Int. J. of GEOMATE.