Classification of wavelet-denoised musical tone stimulated EEG signals using artificial neural networks
Electroencephalogram (EEG) signals contains information which may be of interest for a certain purpose. However, this information may be clouded by noise. The necessity of extracting this information using filtering and feature extraction techniques is of great importance. In this study, the wavelet...
Saved in:
Main Authors: | Navea, Roy Francis R., Dadios, Elmer Jose P. |
---|---|
格式: | text |
出版: |
Animo Repository
2017
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/faculty_research/1933 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
相似書籍
-
Selection of learning algorithm for musical tone stimulated wavelet de-noised EEG signal classification
由: Navea, Roy Francis R., et al.
出版: (2017) -
Classification of confusion level using EEG data and artificial neural networks
由: Renosa, Claire Receli M., et al.
出版: (2019) -
Design and development of a musical tone detection and identification system in brain wave signals
由: Navea, Roy Francis R.
出版: (2017) -
Beta/alpha power ratio and alpha asymmetry characterization of EEG signals due to musical tone stimulation
由: Noscal, Maria Michaela M.
出版: (2016) -
Robust neural network threshold determination for wavelet shrinkage in images
由: Ochotorena, Carlo Noel E., et al.
出版: (2011)