A comparative assessment for algal biodiesel production in the Philippines

Fossil fuels account for more than three-fourths of today's global energy consumption. The combustion of these fuels has contributed to the worsening of climate change and global warming. Fossil fuels are not only detrimental to the environment, but they are also not sustainable. In the Philipp...

Full description

Saved in:
Bibliographic Details
Main Authors: Ubando, Aristotle T., Gue, Ivan Henderson V., Culaba, Alvin B., Cuello, Joel L.
Format: text
Published: Animo Repository 2017
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/2271
https://animorepository.dlsu.edu.ph/context/faculty_research/article/3270/type/native/viewcontent
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
id oai:animorepository.dlsu.edu.ph:faculty_research-3270
record_format eprints
spelling oai:animorepository.dlsu.edu.ph:faculty_research-32702021-08-21T02:45:10Z A comparative assessment for algal biodiesel production in the Philippines Ubando, Aristotle T. Gue, Ivan Henderson V. Culaba, Alvin B. Cuello, Joel L. Fossil fuels account for more than three-fourths of today's global energy consumption. The combustion of these fuels has contributed to the worsening of climate change and global warming. Fossil fuels are not only detrimental to the environment, but they are also not sustainable. In the Philippines, the country is heavily dependent on fossil fuels, as 40% of its energy consumption comes from oil with the majority being diesel fuel. The country must find a solution to reduce its dependency on fossil fuels. An alternative solution are biofuels, because of its reduced carbon emissions compared to fossil fuels while acting as a substitute for fuel. Biofuels production in the Philippines has already been mandated by the Biofuels Act of 2006 resulting to a mandated utilization of biofuels. The recent typhoons parasite infestation in the country has led to the decreased production of biodiesel. Microalgae is then eyed as a potential feedstock for biodiesel production, because of its high oil yield per hectare and fast growth rate. An assessment of the production of algal biofuel is needed in determining the viability of algal biodiesel production in the Philippines. This study, therefore, proposes the use of the life cycle assessment (LCA) methodology as an assessment tool for the viability of the production of algal biofuel in the Philippines. This study focuses on the assessment of a cultivation system in the Philippine for biodiesel production. An Environmental Design of Industrial Products (EDIP) impact category is used for impact assessments. A previous study was already done in comparing the cultivation system with that of another algal cultivation system, however, there has not yet been a comparative study between the use of this cultivation system and with that of jatropha biodiesel production, one of the prospects for biodiesel production. Results show that the algal cultivation system has scored larger impacts due to its electricity consumptions. The fertilizer consumption of the algal cultivation system, however, shows promising results as it was able to achieve a lower impact score in certain categories. © 2017 IEEE. 2017-10-04T07:00:00Z text text/html https://animorepository.dlsu.edu.ph/faculty_research/2271 https://animorepository.dlsu.edu.ph/context/faculty_research/article/3270/type/native/viewcontent Faculty Research Work Animo Repository Algal biofuels--Philippines Biodiesel fuels--Philippines Life cycle costing Clean energy Renewable energy sources Energy Systems Mechanical Engineering
institution De La Salle University
building De La Salle University Library
continent Asia
country Philippines
Philippines
content_provider De La Salle University Library
collection DLSU Institutional Repository
topic Algal biofuels--Philippines
Biodiesel fuels--Philippines
Life cycle costing
Clean energy
Renewable energy sources
Energy Systems
Mechanical Engineering
spellingShingle Algal biofuels--Philippines
Biodiesel fuels--Philippines
Life cycle costing
Clean energy
Renewable energy sources
Energy Systems
Mechanical Engineering
Ubando, Aristotle T.
Gue, Ivan Henderson V.
Culaba, Alvin B.
Cuello, Joel L.
A comparative assessment for algal biodiesel production in the Philippines
description Fossil fuels account for more than three-fourths of today's global energy consumption. The combustion of these fuels has contributed to the worsening of climate change and global warming. Fossil fuels are not only detrimental to the environment, but they are also not sustainable. In the Philippines, the country is heavily dependent on fossil fuels, as 40% of its energy consumption comes from oil with the majority being diesel fuel. The country must find a solution to reduce its dependency on fossil fuels. An alternative solution are biofuels, because of its reduced carbon emissions compared to fossil fuels while acting as a substitute for fuel. Biofuels production in the Philippines has already been mandated by the Biofuels Act of 2006 resulting to a mandated utilization of biofuels. The recent typhoons parasite infestation in the country has led to the decreased production of biodiesel. Microalgae is then eyed as a potential feedstock for biodiesel production, because of its high oil yield per hectare and fast growth rate. An assessment of the production of algal biofuel is needed in determining the viability of algal biodiesel production in the Philippines. This study, therefore, proposes the use of the life cycle assessment (LCA) methodology as an assessment tool for the viability of the production of algal biofuel in the Philippines. This study focuses on the assessment of a cultivation system in the Philippine for biodiesel production. An Environmental Design of Industrial Products (EDIP) impact category is used for impact assessments. A previous study was already done in comparing the cultivation system with that of another algal cultivation system, however, there has not yet been a comparative study between the use of this cultivation system and with that of jatropha biodiesel production, one of the prospects for biodiesel production. Results show that the algal cultivation system has scored larger impacts due to its electricity consumptions. The fertilizer consumption of the algal cultivation system, however, shows promising results as it was able to achieve a lower impact score in certain categories. © 2017 IEEE.
format text
author Ubando, Aristotle T.
Gue, Ivan Henderson V.
Culaba, Alvin B.
Cuello, Joel L.
author_facet Ubando, Aristotle T.
Gue, Ivan Henderson V.
Culaba, Alvin B.
Cuello, Joel L.
author_sort Ubando, Aristotle T.
title A comparative assessment for algal biodiesel production in the Philippines
title_short A comparative assessment for algal biodiesel production in the Philippines
title_full A comparative assessment for algal biodiesel production in the Philippines
title_fullStr A comparative assessment for algal biodiesel production in the Philippines
title_full_unstemmed A comparative assessment for algal biodiesel production in the Philippines
title_sort comparative assessment for algal biodiesel production in the philippines
publisher Animo Repository
publishDate 2017
url https://animorepository.dlsu.edu.ph/faculty_research/2271
https://animorepository.dlsu.edu.ph/context/faculty_research/article/3270/type/native/viewcontent
_version_ 1709757484936200192