Ensemble empirical mode decomposition of photoplethysmogram signals in biometric recognition
This research focuses on using photoplethysmogram (PPG) signals for biometric recognition. Specifically, the biometric traits studied are the ensemble empirical mode decomposition (EEMD) and power spectral density (PSD) of the PPG signals. The classifiers used for testing the performance of the algo...
محفوظ في:
المؤلفون الرئيسيون: | Alonzo, Lea Monica B., Co, Homer S. |
---|---|
التنسيق: | text |
منشور في: |
Animo Repository
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://animorepository.dlsu.edu.ph/faculty_research/2303 https://animorepository.dlsu.edu.ph/context/faculty_research/article/3302/type/native/viewcontent |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A biometric recognition system through photoplethysmogram (PPG) signals
بواسطة: Alonzo, Lea Monica B.
منشور في: (2019) -
Ensemble empirical mode decomposition of photoplethysmogram signals for assessment of ventricular fibrillation
بواسطة: Alonzo, Lea Monica B., وآخرون
منشور في: (2019) -
Adaptive magnitude spectrum algorithm for Hilbert-Huang transform based frequency identification
بواسطة: Ong, K.C.G., وآخرون
منشور في: (2014) -
Handbook of Biometrics
منشور في: (2017) -
Biometrics and Identity Management
بواسطة: David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Ben Schouten, Niels Christian Juul, Andrzej Drygajlo, Massimo Tistarelli.
منشور في: (2017)