Fuzzy linear programming model for the optimal design of a combined cooling, heating, and power plant

The advent of combined cooling, heating, and power (CCHP) plants introduces a new field of research and experimentation to optimize the use of such a system. A CCHP plant offers higher flexibility and efficiency, and lower greenhouse gas emissions in comparison to conventional stand-alone power prod...

Full description

Saved in:
Bibliographic Details
Main Authors: Chiu, Glenn Matthew K., Aviso, Kathleen B., Ubando, Aristotle T., Tan, Raymond Girard R.
Format: text
Published: Animo Repository 2017
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/2482
https://animorepository.dlsu.edu.ph/context/faculty_research/article/3481/type/native/viewcontent
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:The advent of combined cooling, heating, and power (CCHP) plants introduces a new field of research and experimentation to optimize the use of such a system. A CCHP plant offers higher flexibility and efficiency, and lower greenhouse gas emissions in comparison to conventional stand-alone power production systems. As such, this paper aims to utilize actual data of power producing units to design and optimize a CCHP plant. A fuzzy mixed integer linear programming (MILP) model is proposed to select the appropriate processes to be deployed given product demand and environmental footprint constraints. The results would aid plant owners in the design of a CCHP plant. The results showed an optimal configuration of the plant consisting of a gas internal-combustion generator, a gas boiler, and a vapor absorption chiller. The environmental footprint limit was seen to be the limiting factor for the proposed optimized model to produce powers near the lower limit of the product demand constraints. © 2017 IEEE.